New Journal of Chemistry

Electronic Supplementary Information for:

Modulation of Perovskite-Related Framework Induced by Alkaline

Earth Metal in Phosphate Fluorides A₂MPO₄F (A= K, Rb; M = Ba, Ca)

Kun Chai, a Shichao Cheng, b Hongyi Li *c and Bin Dai *a

^aKey Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China;

^bSchool of Physical Science and Technology, Xinjiang University,

666 Shengli Road, Urumqi 830046, China;

^cQuality of Products Supervision & Inspection Institute of Technology,

Xinjiang Uygur Autonomous, 830011, China.

*Corresponding authors,

E-mail: lihy@ms.xjb.ac.cn (Hongyi Li); db_tea@shzu.edu.cn (Bin Dai).

Phone: (+86)993-2057270, Fax: (+86)993-2057210.

Empirical formula	K ₂ CaPO ₄ F
Formula weight	232.25
Temperature	273(2) K
Wavelength	0.71073 Å
Crystal system	Orthorhombic
Space group, Z	Pnma, 4
Unit cell dimensions	a = 12.661(3) Å
	b = 5.8589(16) Å
	c = 7.325(2) Å
Volume	543.4(2) Å ³
Calculated density	2.839 g/cm ³
Absorption coefficient	2.931 mm ⁻¹
<i>F</i> (000)	456
Limiting indices	$-16 \le h \le 16, -7 \le k \le 17, -9 \le l \le 5$
Reflections collected / unique	2849 / 695 [<i>R</i> (int) = 0.0434]
Completeness	99.4 %
Data / restraints / parameters	695 / 0 / 53
Goodness-of-fit on F_o^2	1.247
Final <i>R</i> indices $[F_o^2 > 2\sigma(F_o^2)]^a$	$R_1 = 0.0727, wR_2 = 0.1725$
R indices (all data) ^{<i>a</i>}	$R_1 = 0.0751, wR_2 = 0.1735$
Largest diff. peak and hole	1.095 and -0.941 e·Å ⁻³

Table S1. Crystal data and structure refinement for K₂CaPO₄F.

 ${}^{a}R_{I} = \sum ||F_{o}| - |F_{c}|| / \sum |F_{o}| \text{ and } wR_{2} = [\sum w(F_{o}^{2} - F_{c}^{2})^{2} / \sum wF_{o}^{4}]^{1/2} \text{ for } F_{o}^{2} > 2\sigma(F_{o}^{2}).$

Table S2. Atomic coordinates (×10⁴), equivalent isotropic displacement parameters (Å² ×10³) and BVS for Rb₂CaPO₄F. U_(eq) is defined as one third of the trace of the orthogonalized U_{ij} tensor.

	Х	У	Z	U(eq)	BVS
Rb(1)	763(1)	2500	7015(1)	15(1)	1.16
Rb(2)	3120(1)	2500	4895(1)	15(1)	1.25
Ca(1)	738(1)	2500	2002(1)	8(1)	2.12
P(1)	3414(1)	2500	9836(2)	7(1)	5.00
O(1)	3649(2)	403(3)	8712(3)	15(1)	2.11
O(2)	4112(2)	2500	11513(5)	16(1)	2.11
O(3)	2268(2)	2500	10371(4)	15(1)	2.1
F(1)	0	0	0	13(1)	0.90

Table S3. Atomic coordinates (×10⁴), equivalent isotropic displacement parameters (Å² × 10³) and BVS for K₂CaPO₄F. U_(eq) is defined as one third of the trace of the orthogonalized U_{ij} tensor.

	Х	У	Z	U(eq)	BVS
K(1)	6876(2)	7500	9961(4)	24(1)	0.97
K(2)	5740(2)	2500	-2910(4)	21(1)	0.96
Ca(1)	5710(2)	2500	2022(3)	10(1)	2.31
P(1)	6614(2)	7500	4882(3)	7(1)	5.10
O(1)	5985(7)	7500	6647(13)	26(2)	2.09
O(2)	6323(5)	5360(10)	3799(9)	26(2)	2.08
O(3)	7804(6)	7500	5254(14)	26(2)	2.00
F(1)	5000	0	0	16(1)	1.12

Rb(1)-F(1)#1	2.8498(15)	F(1)#1-Rb(1)-F(1)#2	63.16(5)
Rb(1)-F(1)#2	2.8498(15)	F(1)#1-Rb(1)-O(2)#3	129.34(7)
Rb(1)-O(3)#3	3.013(2)	F(1)#2-Rb(1)-O(2)#3	66.17(7)
Rb(1)-O(3)#4	3.013(2)	F(1)#1-Rb(1)-O(2)#4	66.17(7)
Rb(1)-O(2)#5	3.048(3)	F(1)#2-Rb(1)-O(2)#4	129.34(7)
Rb(1)-O(2)#6	3.048(3)	O(2)#3-Rb(1)-O(2)#4	164.49(13)
Rb(1)-O(2)#3	3.100(3)	F(1)#1-Rb(1)-O(1)#5	92.57(6)
Rb(1)-O(2)#7	3.100(3)	F(1)#2-Rb(1)-O(1)#5	67.33(5)
Rb(1)-O(4)	3.162(4)	O(2)#3-Rb(1)-O(1)#5	67.60(8)
Rb(1)-O(3)#5	3.378(4)	O(2)#4-Rb(1)-O(1)#5	115.65(7)
Rb(2)-O(3)#8	2.821(4)	F(1)#1-Rb(1)-O(1)#6	67.33(5)
Rb(2)-F(1)#9	2.8475(16)	F(1)#2-Rb(1)-O(1)#6	92.57(6)
Rb(2)-F(1)#10	2.8475(16)	O(2)#3-Rb(1)-O(1)#6	115.65(7)
Rb(2)-O(2)#3	2.997(3)	O(2)#4-Rb(1)-O(1)#6	67.60(8)
Rb(2)-O(2)#7	2.997(3)	O(1)#5-Rb(1)-O(1)#6	48.51(9)
Rb(2)-O(4)#3	3.047(2)	F(1)#1-Rb(1)-O(1)#3	173.86(4)
Rb(2)-O(4)#4	3.047(2)	F(1)#2-Rb(1)-O(1)#3	114.12(6)
Rb(2)-O(2)#11	3.177(3)	O(2)#3-Rb(1)-O(1)#3	48.30(8)
Rb(2)-O(2)	3.177(3)	O(2)#4-Rb(1)-O(1)#3	116.28(8)
Rb(2)-O(4)#8	3.539(4)	O(1)#5-Rb(1)-O(1)#3	81.29(7)
Ca(1)-O(1)#7	2.290(2)	O(1)#6-Rb(1)-O(1)#3	107.94(5)
Ca(1)-O(1)#3	2.290(2)	F(1)#1-Rb(1)-O(1)#7	114.12(6)
Ca(1)-F(1)	2.3131(12)	F(1)#2-Rb(1)-O(1)#7	173.86(4)
Ca(1)-F(1)#14	2.3131(12)	O(2)#3-Rb(1)-O(1)#7	116.28(8)
Ca(1)-O(3)#8	2.315(3)	O(2)#4-Rb(1)-O(1)#7	48.30(8)
Ca(1)-O(2)#5	2.370(3)	O(1)#5-Rb(1)-O(1)#7	107.94(5)
P(1)-O(3)	1.531(3)	O(1)#6-Rb(1)-O(1)#7	81.29(7)
P(1)-O(1)#11	1.535(2)	O(1)#3-Rb(1)-O(1)#7	81.29(7)
P(1)-O(1)	1.535(2)	O(1)#3-Rb(1)-O(1)#7	67.98(9)

Table S4. Selected bond distances (Å) and bond angles (deg) for Rb₂CaPO₄F.

P(1)-O(2) 1.538(3) F(1)#1-Rb(1)-O(3) 66.23(6)

Symmetry transformations used to generate equivalent atoms:

#1 -x, y+1/2, -z+1 #2 x, y, z+1 #3 -x+1/2, -y, z-1/2 #4 -x+1/2, -y+1, z-1/2 #5 x-1/2, y, -z+3/2 #6 x-1/2, -y+1/2, -z+3/2 #7 -x+1/2, y+1/2, z-1/2 #8 x, y, z-1 #9 x+1/2, -y+1/2, -z+1/2 #10 -x+1/2, -y, z+1/2 #11 x, -y+1/2, z #12 x+1/2, y, -z+3/2 #13 -x+1/2, -y+1, z+1/2 #14 -x, y+1/2, -z #15 -x, -y, -z+1 #16 -x, -y+1, -z+1 #17 x-1/2, y, -z+1/2 #18 -x, -y, -z

K(1)-O(1)	2.677(10)	O(2)-Ca(1)-O(2)#1	95.7(3)
K(1)-F(1)#9	2.791(2)	O(2)-Ca(1)-F(1)	172.35(18)
K(1)-F(1)#10	2.791(2)	O(2)#1-Ca(1)-F(1)	91.91(17)
K(1)-O(2)#11	2.955(7)	O(2)-Ca(1)-F(1)#2	91.91(17)
K(1)-O(2)#12	2.955(7)	O(2)#1-Ca(1)-F(1)#2	172.35(18)
K(1)-O(3)#13	2.9651(17)	F(1)-Ca(1)-F(1)#2	80.44(7)
K(1)-O(3)#12	2.9651(16)	O(2)-Ca(1)-O(3)#3	92.5(2)
K(1)-O(2)#14	3.157(7)	O(2)#1-Ca(1)-O(3)#3	92.5(2)
K(1)-O(2)#15	3.157(7)	F(1)-Ca(1)-O(3)#3	87.5(2)
K(2)-F(1)#2	2.751(2)	F(1)#2-Ca(1)-O(3)#3	87.5(2)
K(2)-F(1)	2.751(2)	O(2)-Ca(1)-O(1)#4	94.3(2)
K(2)-O(3)#3	2.961(10)	O(2)#1-Ca(1)-O(1)#4	94.3(2)
K(2)-O(1)#7	2.9636(15)	F(1)-Ca(1)-O(1)#4	84.8(2)
K(2)-O(1)#8	2.9636(15)	F(1)#2-Ca(1)-O(1)#4	84.8(2)
K(2)-O(2)#17	2.969(7)	O(3)#3-Ca(1)-O(1)#4	169.9(4)
K(2)-O(2)#6	2.969(7)	O(1)-K(1)-F(1)#9	69.54(16)
K(2)-O(2)#18	3.027(7)	O(1)-K(1)-F(1)#10	69.54(16)
K(2)-O(2)#7	3.027(7)	F(1)#9-K(1)-F(1)#10	63.32(6)
Ca(1)-O(2)	2.260(6)	O(1)-K(1)-O(2)#11	93.7(2)
Ca(1)-O(2)#1	2.260(6)	F(1)#9-K(1)-O(2)#11	163.21(17)
Ca(1)-F(1)	2.2683(16)	F(1)#10-K(1)-O(2)#11	111.23(12)
Ca(1)-F(1)#2	2.2683(16)	O(1)-K(1)-O(2)#12	93.7(2)
Ca(1)-O(3)#3	2.284(8)	F(1)#9-K(1)-O(2)#12	111.23(12)
Ca(1)-O(1)#4	2.357(9)	F(1)#10-K(1)-O(2)#12	163.21(17)

Table S5. Selected bond distances (Å) and bond angles (deg) for K₂CaPO₄F.

Symmetry transformations used to generate equivalent atoms:

#1 x+1/2, -y+3/2, -z+1/2	#2 -x+1/2, -y+1, z+1/2	#3 -x+1/2, -y, z-1/2
#4 -x+1/2, -y+1, z-1/2	#5 x+1/2, -y+1/2, -z+1/2	#6 x+1/2, y, -z+1/2

#7 -x+1/2, y+1/2, z-1/2 #8 -x+1/2, -y+2, z+1/2 #9 x, -y+1/2, z #10 x, y+1, z #11 -x+1/2, y+1/2, z+1/2 #12 -x, y-1/2, -z #13 -x, -y+1, -z+1 #14 x-1/2, y, -z+1/2 #15 x-1/2, y+1, -z+1/2 #16 -x+1/2, -y+2, z-1/2 #17 x, y-1, z #18 -x+1/2, -y, z+1/2 #19 -x, -y+2, -z

Compounds		BVS			GII	
Compounds	Rb^+	K^+	Ca^{2+}	Ba ²⁺	Rb^+ & Ca^+	K^+ & Ba^{2+}
Rb ₂ CaPO ₄ F	1.16 & 1.25	0.76 & 0.86	2.12	5.12	0.046	0.392
K ₂ BaPO ₄ F	1.59	1.29	0.76	1.82	0.277	0.079

Table S6. Comparison of BVS and GII values in Rb₂CaPO₄Fand K₂BaPO₄F.

Figure S1. XRD patterns of: (a) K₂CaPO₄F; (b) Rb₂CaPO₄F.

Figure S2. The 3D framework of K₂BaPO₄F.

(b) Figure S3. IR spectra of : (a) K₂CaPO₄F; (b) Rb₂CaPO₄F.

(b) Figure S4. UV-Vis-NIR diffuse reflectance spectra of: (a) K₂CaPO₄F; (b) Rb₂CaPO₄F.

Figure S5. TG-DSC curves of: (a) K₂CaPO₄F; (b) Rb₂CaPO₄F.

Figure S6. Calculated and after melting powder XRD patterns of: (a) K_2CaPO_4F ; (b) Rb_2CaPO_4F .