Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

Electronic Supplementary Material (ESI) for New Journal of Chemistry.

This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

Supporting Information

Enhancement of the visible light photocatalytic activity of CeO₂ by chemisorbed oxygen in the selective oxidation of benzyl alcohol

Zhiqing Cui^{a,b}, Hongjian Zhou^{a,*}, Guozhong Wang^a, Yunxia Zhang^a, Haimin Zhang^{a,*} and Huijun Zhao^{a,c}

^a Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, China

^b University of Science and Technology of China, Hefei 230026, China

^c Centre for Clean Environment and Energy, Griffith University, Gold Coast Campus, QLD 4222, Australia

* Corresponding author: hjzhou@issp.ac.cn (H. Zhou); Zhanghm@issp.ac.cn (H. Zhang)

Fig. S1. (a) N_2 adsorption-desorption isotherms of the CeO₂-X samples. (b) XRD patterns of various CeO₂-X samples was calcined at 400 °C for 2 h in air.

Fig. S2. (a) Reaction selectivity in oxidizing benzyl alcohol to benzaldehyde of various CeO_2 -X samples. (b) The photocatalytic conversion of benzyl alcohol without the addition of photocatalysts under light irradiation (blank), in the presence of CeO_2 - O_2 composites in the dark (dark) and in the presence of CeO_2 - O_2 composites under visible light illumination for irradiation 2 h.

Fig. S3. (a) Mott-Schottky plots of CeO_2-O_2 samples measured under the visible light. (b) Conversions of photocatalytic benzyl alcohol using the CeO_2 -Ar-400 °C, CeO_2 -Air-400 °C and CeO_2-O_2 -400 °C as catalysts under illumination for 2 h.

Fig. S4. (a) XPS spectra of CeO₂-Ar, CeO₂-Air and CeO₂-O₂ nanostructures. (b) High-resolution O 1s XPS spectra of CeO₂-400 °C sample. (c) High-resolution O 1s XPS spectra of CeO₂-Ar, CeO₂-Air and CeO₂-O₂. (d) EPR profiles measured at room temperature for CeO₂-O₂ sample.

Fig. S5. (a) Raman spectrum of the CeO₂-Ar-400 °C, CeO₂-Air-400 °C and CeO₂-O₂-400 °C. (b) UV–vis DRS of the CeO₂-Ar, CeO₂-Air and CeO₂-O₂ photocatalysts after photocatalytic reaction under O₂-saturated atmosphere.

Table S1. Composition on CeO₂-Ar, CeO₂-Air, CeO₂-O₂, and CeO₂-O₂-400 °C samples characterized by XPS technique.

Sample	O (at.%)	Ce (at.%)	Surface content of O _{ads} (%)	Ce(III) content in total Ce (%)
CeO ₂ -Ar	77.7	22.3	31.7	17.1
CeO ₂ -Air	79.2	20.8	33.6	16.6
CeO ₂ -O ₂	82.6	17.4	46.1	14.9
CeO ₂ -O ₂ -400 °C	76.8	23.2	31.3	15.2