Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

Supplementary Information for: New Molecular Design for Blue BODIPYs

Zhiyuan Wu,^a Hikaru Fujita,^a Nikki Cecil M. Magdaong,^b James R. Diers,^c Don Hood,^b Srinivasarao Allu,^a Dariusz M. Niedzwiedzki,^d Christine Kirmaier,^b David F. Bocian,^{c,*} Dewey Holten,^{b,*} and Jonathan S. Lindsey^{a,*}

^a Department of Chemistry North Carolina State University Raleigh, North Carolina 27695-8204

^b Department of Chemistry Washington University St. Louis, Missouri 63130-4889

^c Department of Chemistry University of California Riverside, California 92521-0403

^d Department of Energy, Environmental & Chemical Engineering and Center for Solar Energy and Energy Storage Washington University St. Louis, Missouri 63130-4889

Table of Contents

Topic	Page
Summary of crystal data	S2
Molar absorption coefficient data	S3
Photophysical data	S3
Spectral data	S4

	1-BBu ₂	2-BBu ₂	2-BF ₂
CCDC registry	1900105	1900106	1900107
Formula	$C_{23}H_{37}BN_2O_2$	$C_{23}H_{36}BBrN_2O_2$	$C_{15}H_{18}BBrF_2N_2O_2$
Formula Weight (g/mol)	384.35	463.26	387.03
Crystal Dimensions (mm)	$0.232 \times 0.264 \times 0.370$	$0.184 \times 0.298 \times 0.425$	$0.212 \times 0.326 \times 0.418$
Crystal System	monoclinic	hexagonal	triclinic
Space Group	P 1 21/n 1	P 65	P - 1
Temperature, K	180(2)	100(2)	100(2)
<i>a</i> , Å	11.8186(2)	9.6838(2)	7.1235(2)
b, Å	9.1192(2)	9.6838(2)	11.0063(3)
<i>c</i> , Å	22.4535(5)	43.5738(8)	11.5158(3)
α , deg	90	90	66.4695(11)
β, deg	103.9509(8)	90	84.0270(12)
γ, deg	90	120	83.5531(13)
V, Å ³	2348.57(8)	3538.73(16)	820.83(4)
Number of reflections to	281	378	246
determine final unit cell			
Min and Max 20 for cell	3.815, 45.38	17.95, 63.19	4.280, 66.43
determination (deg)			
Ζ	4	6	2
F (000)	840	1464	392
ρ (g/cm)	1.087	1.304	1.566
λ, Å, (MoKα)	0.71073	0.71073	0.71073
$\mu, (mm^{-l})$	0.068	1.763	2.533
Max 20 for data	47.64	66.32	73.08
collection (deg)			
Measured fraction of data	0.998	1.000	0.998
Number of reflections	32991	185013	52690
measured			
Unique reflections	3604	8999	8056
measured			
R _{merge}	2.14%	4.74%	2.70%
Number of parameters	392	268	212
in least-squares	0.0441	0.0001	0.0007
K ₁	0.0441	0.0331	0.0237
WK_2	0.1140	0.07/3	0.0388
\mathbf{K}_1 (all data)	0.0561	0.0347	0.0303
WK_2 (all data)	0.1252	0.0779	0.0608

 Table S1.
 Summary of crystal data for dihydrodipyrrin–complexes.

Compound	Abs (nm) in toluene	$\frac{\epsilon (M^{-1} \cdot cm^{-1})}{\text{in toluene}}$	Abs (nm) in acetonitrile	$\epsilon (M^{-1} \cdot cm^{-1})$ in acetonitrile
1-BBu ₂	398	1.1×10^4	377	1.1×10^4
2	332	2.5×10^4	322	2.3×10^4
2-BBu ₂	399	8.6×10^{3}	375	9.1×10 ³
2-BF ₂	400	1.1×10^4	_	_
3-BBu ₂	408	1.1×10^4	_	_
3-BF ₂	400	1.3×10^4	_	_
4-BBu ₂	436	1.5×10^4	_	_

Table S2. Molar absorption coefficient of dihydrodipyrrin complexes.

Fluorescence yields were determined against two standards using several different excitation wavelengths and the results were averaged. Single excited-state lifetimes were determined on two transient absorption spectrometers and by fluorescence decay and the results were averaged. The values and averages are given in Table S3.

 Table S3. Photophysical properties.^a

Cmpd	Solvent	Φ _f vs pyranine	Φ _f vs BDPY1	$\Phi_{\rm f}$ avg	τ _s Helios TA (ns)	τ _s EOS TA (ns)	$\begin{matrix} \tau_S \\ TCSPC \\ (ns) \end{matrix}$	$ au_{S}$ (ns)
1-BBu ₂	toluene	0.89	0.84	0.87 ± 0.04	8.0	6.6	7.9	7.5 ± 0.8
1-BBu ₂	MeCN	0.87	0.90	0.88 ± 0.04		9.0	8.6	8.8 ± 0.3
1-BBu ₂	DMSO	0.88	0.92	0.90 ± 0.04		7.7	8.0	7.9 ± 0.2
2-BBu ₂	toluene	0.81	0.81	0.81 ± 0.01	7.2	6.4	7.3	7.0 ± 0.5
2-BF ₂	toluene	0.43	0.41	0.42 ± 0.01	5.1	4.8	4.8	4.9 ± 0.2
3-BBu ₂	toluene	0.91	0.85	0.88 ± 0.03	6.2	7.4	7.5	7.0 ± 0.7
3-BF ₂	toluene	0.4	0.36	0.38 ± 0.04	5.0	4.8	4.8	4.9 ± 0.1
4-BBu ₂	toluene	0.3	0.29	0.30 ± 0.04	3.9	3.8	3.9	3.9 ± 0.1

^{*a*}All data were acquired at room temperature. MeCN is acetonitrile and DMSO is dimethylsulfoxide. Fluorescence yields were determined for deoxygenated samples relative to standards pyranine ($\Phi_f = 1.0$ in 0.10 M NaOH²³) and 5-mesityldipyrrinatoboron difluoride (**BDPY1**) ($\Phi_f = 0.93$ in toluene²⁴) and averaged. Singlet excited-state lifetimes (τ_s) were determined via transient absorption (TA) spectroscopy using Helios (-2 ps to 7 ns) and EOS (-2 ns to 40 ns) spectrometers and via fluorescence decay using time correlated single photon counting (TCSPC) and the resulting three values were averaged.

