Electronic Supplementary Information

Tuning the Aggregation of an Amphiphilic Anionic Calix[5]arene by Selective Host-guest Interactions with Bola-type Dications

Ilenia Pisagatti,^a Lucia Barbera,^a Giuseppe Gattuso,^a Valentina Villari,^b Norberto Micali,^b Enza Fazio,^c Fortunato Neri,^c Melchiorre F. Parisi ^a and Anna Notti ^{a,*}

^aDipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Viale F. Stagno d'Alcontres, 31 98166 Messina, Italy. ^bCNR-IPCF Istituto per i Processi Chimico-Fisici, Viale F. Stagno d'Alcontres 37, 98158 Messina, Italy. ^cDipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze della Terra (MIFT), Università di Messina, Viale F. Stagno d'Alcontres, 31 98166 Messina, Italy.

Contents	page
Figure S1 . DLS size distribution of the aggregates present in aqueous solution of 1 and 2:1 1/NC₈N mixtures.	S3
Figure S2 . DLS size distribution of the aggregates present in aqueous solution of 1 and 2:1 1/NC₁₆N mixtures.	S 3
Figure S3. ¹ H NMR titration spectra of 1 and NC₈N .	S 4
Figure S4. ¹ H NMR titration spectra of 1 and NC₁₀N .	S 4
Figure S5. ¹ H NMR titration spectra of 1 and NC₁₂N .	S 5
Figure S6 . ¹ H NMR dilution experiment of 1/NC₁₂N samples.	S 5
Figure S7. ¹ H NMR titration spectra of 1 and NC ₁₆ N.	S6
Cac determination of NC ₁₀ N/type-II bola-amphiphile	S7
Figure S8 . ¹ H NMR dilution experiment of NC ₁₀ N/ type-II aggregate.	S7
Figure S9 . Plot of the self-diffusion coefficients (<i>D</i>) <i>vs</i> the inverse of NC 10 N/type-II bola-amphiphile concentrations.	S 8
Cac determination of NC ₁₆ N/type-I bola-amphiphile	S 8
Figure S10. Plot of Sudan I absorbance variations vs NC ₁₆ N/type-I bola amphiphile concentrations.	S 8
Figure S11. VT ¹ H NMR spectra (D ₂ O, 500 MHz, 298 K) of $[1] = [NC_{10}N] = 0.4$ mM.	S9
Figure S12. VT ¹ H NMR spectra (D ₂ O, 500 MHz, 298 K) of [1] = [NC ₁₆ N] = 0.4 mM.	S9
Tamoxifen solubilisation experiments	S10
Figure S13. ¹ H NMR experiment with tamoxifen.	S10

Figure S1. DLS size distribution of the aggregates present in aqueous solutions of: (a) [1] = 0.1 mM; (b) [1] = 0.1 mM and $[NC_8N] = 0.05$ mM. The spectral amplitude represents the intensity-related contribution of each scatterer.

Figure S2. DLS size distribution of the aggregates present in aqueous solutions of: (a) [1] = 0.1 mM; (b) [1] = 0.1 mM and $[\mathbf{NC}_{16}\mathbf{N}] = 0.05 \text{ mM}$. The spectral amplitude represents the intensity-related contribution of each scatterer.

Figure S3. ¹H NMR spectra (D_2O , 500 MHz, 298 K) of: (a) [**1**] = 0.4 mM; (b) [**1**] = 0.4 mM and [**NC**₈**N**] = 0.2 mM; (c) [**1**] = [**NC**₈**N**] = 0.4 mM; (d) [**NC**₈**N**] = 0.4 mM. Red and green dashed lines refer to selected resonances of the type-I aggregate and the catanionic aggregate respectively. The suppressed HDO resonance is marked with an asterisk.

Figure S4. ¹H NMR spectra (D₂O, 500 MHz, 298 K) of: (a) [1] = 0.4 mM; (b) [1] = 0.4 mM and $[NC_{10}N] = 0.2$ mM; (c) $[1] = [NC_{10}N] = 0.4$ mM; (d) $[NC_{10}N] = 0.4$ mM. Blue dashed lines refer to selected resonances of the type-II complex. The suppressed HDO resonance is marked with an asterisk.

Figure S5. ¹H NMR spectra (D₂O, 500 MHz, 298 K) of: (a) [**1**] = 0.4 mM; (b) [**1**] = 0.4 mM and $[NC_{12}N] = 0.2 \text{ mM}$; (c) [**1**] = $[NC_{12}N] = 0.4 \text{ mM}$; (d) $[NC_{12}N] = 0.4 \text{ mM}$. Red, blue and green dashed lines indicate selected resonances of the type-I aggregate, the type-II complex and the catanionic aggregate, respectively. The suppressed HDO resonance is marked with an asterisk.

Figure S6. ¹H NMR spectra (D_2O , 500 MHz, 298 K) of: (a) [**1**] = 0.4 mM; (b) [**1**] = 0.2 mM and [$NC_{12}N$] = 0.05 mM; (c) [**1**] = 0.4 mM and [$NC_{12}N$] = 0.1 mM. Red and blue dashed lines refer to selected resonances of the type-I aggregate and the type-II complex respectively. The suppressed HDO resonance is marked with an asterisk.

Figure S7. ¹H NMR spectra (D_2O , 500 MHz, 298 K) of: (a) [**1**] = 0.4 mM; (b) [**1**] = 0.4 mM and [$NC_{16}N$] = 0.2 mM; (c) [**1**] = [$NC_{16}N$] = 0.4 mM; (d) [$NC_{16}N$] = 0.4 mM. Red and green dashed lines refer to selected resonances of the type-I aggregate and the catanionic aggregate respectively. The suppressed HDO resonance is marked with an asterisk.

Cac determination of NC₁₀N/type-II bola-amphiphile.

Self-diffusion coefficients of the type-II bola-amphiphile were determined in 2:1 $1/NC_{10}N$ D₂O solutions with concentrations of 1 ranging from 0.4 to 6.2 mM. The weighted average of the diffusion coefficients of the monomer and the aggregates was conveniently extracted from the resonances of thiomethylene groups ($\delta = 2.83$ ppm) that were found to be isochronous over the entire concentration range under investigation. A cac value of 0.77 mM was estimated from the intersection point of the two lines best fitting the experimental data points obtained by plotting the D_{obs} vs the inverse of the type-II complex concentration. The concentration of the complex is based on that of $NC_{10}N$, assuming that all the guest was consumed to afford the supramolecular capsule.

Figure S8. ¹H NMR spectra (D_2O , 500 MHz, 298 K) of: (a) [1] = 6.2 mM and [$NC_{10}N$] = 3.1 mM; (b) [1] = 4.0 mM and [$NC_{10}N$] = 2.0 mM; (c) [1] = 2.5 mM and [$NC_{10}N$] = 1.75 mM; (d) [1] = 1.0 mM and [$NC_{10}N$] = 0.5 mM; e) [1] = 0.4 mM and [$NC_{10}N$] = 0.2 mM. Asterisks and hashtags indicate residual solvent peaks.

Figure S9. Plot of the self-diffusion coefficients (D) vs the inverse of NC₁₀N concentration.

Cac determination of NC₁₆N/type-I bola-amphiphile by dye solubilisation experiments.

The dye solubilisation experiments were carried out by adding an excess of Sudan I (as a solid) to equimolar solutions of **1** and **NC**₁₆**N** of different concentrations ([**1**] = [**NC**₁₆**N**] = 0–400 μ M). Solutions were left to equilibrate for 24 h at room temperature, filtered through a 0.4 μ m Millipore filter, to remove excess undissolved dye, and their absorbance measured at λ = 485 nm. The cac of the **NC**₁₆**N**/type-I bola-amphiphile was derived from the intersection between the two lines best fitting the experimental data points of the dye Abs₄₈₅ *vs* [**1**] = [**NC**₁₆**N**] plot. The formation of **1**/**NC**₁₆**N** type-I aggregates was seen to start at a concentration of [**1**] = [**NC**₁₆**N**] = 17 μ M.

Figure S10. Sudan I absorbance variations (at 485 nm) for increasing concentrations of type-I bola-amphiphile (reported as $[1] = [NC_{16}N]$).

Figure S11. ¹H NMR spectra (D_2O , 500 MHz) of [**1**] = [$NC_{10}N$] = 0.4 mM at: (a) T = 298 K, (b) T = 318 K and (c) T = 348 K. The suppressed HDO resonance is marked with an asterisk.

Figure S12. ¹H NMR spectra (D_2O , 500 MHz) of [**1**] = [**NC**₁₆**N**] = 0.4 mM at: (a) T = 298 K, (b) T = 318 K and (c) T = 348 K. The suppressed HDO resonance is marked with an asterisk.

Tamoxifen solubilisation experiments.

Solid tamoxifen (1 µmol) was added to a 0.4 mM solution of **1** and **NC**₁₆**N** (1:1) in ultrapure H₂O (1.0 mL). After equilibration for 24 h at room temperature in the dark, the solution was centrifugated (6000 rpm) for 10 minutes to remove undissolved solid. 900 µL of the supernatant were extracted with 900 µL of CHCl₃ in a screw-top vial for 12 h at 20 °C. The organic phase was diluited 10 times prior to UV analysis. The solubilization experiment was performed in triplicate and the amount of the extracted tamoxifen (140±3 µg) was determined from the absorbance value at λ = 275 nm.

200 μ L of CDCl₃ were added to 300 μ L of the tamoxifen chloroformic solution and the concentration of recovered tamoxifen was determined from the integral of selected peaks by using the quantitative qNMR Varian Vnmrj 3.2 software.

Figure S13. ¹H NMR spectra (500 MHz, 298 K) of a D_2O solution of [**1**] = [**NC**₁₆**N**] = 0.4 mM (a) prior to and (b) after exctraction of tamoxifen; (c) tamoxifen in CD₃OD.