Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

Tandem transfer hydrogenation-epoxidation of ketone substrates catalysed by alkene-tethered Ru(II)-NHC complexes

Frederick P. Malan,^[a] Eric Singleton,^[a] Petrus H. van Rooyen^[a] and Marilé Landman*^[a]

[a] Department of Chemistry, University of Pretoria, 02 Lynnwood Road, Hatfield, Pretoria, 0002, South Africa.

Supporting Information

- 1. Synthesis, characterization, and NMR spectra of [H(L1-L6)]CI
- 2. ¹H-, ¹³C-, ³¹P-NMR spectra of **1-9**
- 3. Variable temperature ¹H-NMR spectra (complex **4**)
- 4. Crystal data and structure refinement for [HL5]Cl, P2, P3, 1, 2, 4, 5, 8, 9 (Tables S1,S2,S3)
- 5. Selected bond lengths and angles for [HL5]Cl, P2, P3, 1, 2, 4, 5, 8, 9 (Table S4)
- 6. Time-resolved conversion profiles in the transfer hydrogenation-epoxidation catalysis
- 7. Optimization of transfer hydrogenation-epoxidation conditions (**Table S5**)
- 8. ¹H-NMR spectrum of catalysis reaction mixture

1. Synthesis, characterization, and NMR spectra of [H(L1-L6)]Cl

General synthesis of imidazolium salts: To an acetonitrile (20 mL) solution of the respective *N*-alkyl imidazole (42 mmol, [HL1]Cl, [HL2]Cl) was added 1-chloro-2-methylpropene (1 equivalent), and the resulting mixture heated under reflux overnight. After cooling, the reaction mixture was concentrated *in vacuo*, and washed with a 1:1 v/v Et₂O/Et₂OAc mixture (3 × 15 mL). The resulting oil/solid was concentrated in vacuo to give the respective ligands [H(L1-L6)]Cl.

[HL1]Cl: Yield: 94%. ¹H NMR ((CD₃)₂SO): $\delta_{H} = 1.67$ (s, 3H, CH₃), 3.89 (s, 3H, NCH₃), 4.84 (s, 3H, =CH + NCH₂), 5.01 (s, 1H, =CH), 7.74 (d, ³J_{HH} = 2 Hz, 1H, NCH), 7.81 (d, ³J_{HH} = 2 Hz, 1H, NCH), 9.40 (s, 1H, NCHN). ¹³C{¹H} NMR ((CD₃)₂SO): $\delta_{C} = 19.5$ (s, CH₃), 35.9 (s, NCH₃), 54.0 (s, NCH₂), 114.9 (s, =CH₂), 122.6 (s, NCH), 123.9 (s, NCH), 137.0 (s, CCH₂), 139.5 (s, NCN).

¹H-NMR

[HL2]Cl: Yield: 91%. ¹H NMR (CDCl₃): $\delta_{H} = 1.39$ (s, 3H, CH₃), 4.65 (s, 1H, =CH₂), 4.72 (s, 1H, =CH₂), 4.83 (s, 2H, CH₂), 5.34 (s, 2H, CH₂), 6.66 (s, 1H, NCH), 6.70 (s, 1H, NCH), 7.26 (m, 4H, C₆H₅), 7.49 (m, 1H, C₆H₅), 10.14 (s, 1H, NCHN). ¹³C{¹H} NMR (CDCl₃): $\delta_{C} = 18.5$ (s, CH₃), 51.6 (s, CH₂), 53.9 (s, CH₂), 115.5 (s, =CH₂), 121.4 (s, NCH), 121.4 (s, NCH), 132.6 (s, C₆H₅), 135.1 (s, C₆H₅), 135.7 (s, *ipso* C₆H₅), 136.0 (s, CCH₂), 136.9 (s, NCN).

[HL3]CI: Yield: 67%. ¹H NMR (CDCl₃): $\delta_{H} = 1.67$ (s, 3H, CH₃), 4.79 (s, 2H, CH₂), 4.92 (s, 1H, =CH), 5.07 (s, 1H, =CH), 5.84 (s, 2H, CH₂), 6.74 (s, 1H, NCH), 6.94 (s, 1H, NCH), 7.74 (d, ³*J*_{HH} = 6 Hz, 2H, C₆H₄), 8.05 (m, 2H, C₆H₄), 10.82 (s, 1H, NCHN). ¹³C{¹H} NMR (CDCl₃): $\delta_{C} = 19.5$ (s, CH₃), 51.9 (s, CH₂), 53.6 (s, CH₂), 117.4 (s, =CH₂), 122.0 (s, NCH), 122.3 (s, NCH), 129.1 (s, C₆H₄), 129.5 (s, C₆H₄), 129.9 (s, *ipso* C₆H₄), 137.4 (s, CCH₂), 143.4 (s, NCN).

[HL4]Cl: Yield: 86%. ¹H NMR (CDCl₃): $\delta_{H} = 1.63$ (s, 3H, CH₃), 1.97 (t, ³*J*_{HH} = 8 Hz, 2H, CH₂), 4.69 (t, ³*J*_{HH} = 8 Hz, 2H, CH₂), 4.84 (m, 4H, =CH₂ + CH₂), 5.02 (s, 1H, =CH₂), 7.09 (d, ³*J*_{HH} = 8 Hz, 1H, NCH), 7.18-7.28 (m, 3H, NCH + C₆H₅), 7.37 (m, 1H, C₆H₅), 7.40 (m, 1H, C₆H₅), 7.70 (m, 1H, C₆H₅), 10.06 (s, 1H, NCHN). ¹³C{¹H} NMR (CDCl₃): $\delta_{C} = 19.1$ (s, CH₃), 35.8 (s, CH₂), 50.4 (s, CH₂), 54.8 (s, CH₂), 116.4 (s, =CH₂), 121.5 (s, NCH), 122.5 (s, NCH), 126.5 (s, C₆H₅), 128.3 (s, C₆H₅), 128.4 (s, C₆H₅), 135.3 (s, *ipso* C₆H₅), 136.4 (s, CCH₂), 137.4 (s, NCN).

 $\begin{array}{l} [\text{HL5}] \text{CI: Yield: 88\%. }^1 \text{H NMR (CDCl_3): } \\ \bar{\delta}_{\text{H}} = 1.67 \ (\text{s}, 6\text{H}, \text{CH}_3), \ 4.91 \ (\text{s}, 6\text{H}, \text{CH}_2 + =\text{CH}_2), \ 5.03 \ (\text{s}, 2\text{H}, =\text{CH}_2), \ 7.38 \ (\text{s}, 2\text{H}, \text{NCH}), \ 10.62 \ (\text{s}, 1\text{H}, \text{NCH}). \ {}^{13}\text{C}\{^1\text{H}\} \ \text{NMR (CDCl}_3): \ \bar{\delta}_{\text{C}} = 19.5 \ (\text{s}, \text{CH}_3), \ 19.6 \ (\text{s}, \text{CH}_3), \ 55.4 \ (\text{s}, \text{CH}_2), \ 116.9 \ (\text{s}, =\text{CH}_2), \ 122.0 \ (\text{s}, \text{NCH}), \ 137.9 \ (\text{s}, \text{C(CH}_3)_2), \ 138.3 \ (\text{s}, \text{NCN}). \end{array}$

 $[\text{HL6}] \text{Cl: Yield: 92\%. }^{1}\text{H NMR} ((\text{CD}_{3})_{2}\text{SO}): \delta_{\text{H}} = 1.73 \text{ (s, 3H, CH}_{3}), 4.94 \text{ (s, 1H, =CH}_{2}), 5.06 \text{ (s, 1H, =CH}_{2}), 5.22 \text{ (s, 2H, NCH}_{2}), 5.87 \text{ (s, 2H, NCH}_{2}), 7.30-7.42 \text{ (m, 3H, C}_{6}\text{H}_{4}), 7.54-7.66 \text{ (m, 4H, C}_{6}\text{H}_{4} + C_{6}\text{H}_{5}), 8.00 \text{ (m, 2H, C}_{6}\text{H}_{5}), 10.34 \text{ (s, 1H, NCHN}). }^{13}\text{C}{}^{1}\text{H} \text{NMR} ((\text{CD}_{3})_{2}\text{SO}): \delta_{\text{C}} = 19.8 \text{ (s, CH}_{3}), 47.8 \text{ (s, CH}_{2}), 51.5 \text{ (s, CH}_{2}), 110.8 \text{ (s, C}_{6}\text{H}_{4}), 119.6 \text{ (s, =CH}_{2}), 121.8 \text{ (s, NCH)}, 122.6 \text{ (s, NCH)}, 127.5 \text{ (s, C}_{6}\text{H}_{5}), 127.8 \text{ (s, C}_{6}\text{H}_{5}), 128.8 \text{ (s, C}_{6}\text{H}_{5}), 133.7 \text{ (s, C}_{6}\text{H}_{4}), 137.0 \text{ (s, } ipso C_{6}\text{H}_{5}), 143.6 \text{ (s, CCH}_{2}), 144.3 \text{ (s, NCN)}.$

2. ¹H-, ¹³C-, ³¹P-NMR spectra of **1-9**

Complex 1

¹H-NMR

Complex 2

130 90 60 30 0 -20 -50 -80 -110 -150 -200

Complex 4

Complex 5

Complex 6

Complex 8

90 60 30 0 -20 -50 -80 -110 -150 -200

Complex 9

3. Variable temperature ¹H-NMR (400 MHz) spectra (complex 4). [Solvent = (CD₃)₂CO.]

4. Crystal data and structure rennement for [hl3]Ci, r2,r3, 1,2,4,3,6 (Tables 3)

Complex	[HL5]CI	P2	P3	1	
Emp. formula	C14.7H24N2.7O0.7Cl1.3	C43H39Cl3P2Ru	C42H37Cl3As2Ru	C31H32N2F6P2Ru	
Form. wt. (g.mol ⁻¹)	295.64	740.17	898.97	709.59	
Crystal system	orthorhombic	triclinic	triclinic	monoclinic	
Space group	Pbcn	P-1	P-1	P2₁/c	
Crystal descr.	colourless blade	yellow block	orange block	yellow plate	
a (Å)	16.1278(8)	9.8196(2)	9.931(7)	16.2788(2)	
b (Å)	12.2682(5)	14.155(3)	14.018(1)	9.1026(9)	
c (Å)	12.5817(6)	14.978(3)	14.536(1)	19.875(2)	
α (°)	90	73.264(8)	102.99(2)	90	
β (°)	90	71.924(7)	104.958(2)	96.086(3)	
γ (°)	90	78.353(7)	98.90(2)	90	
Volume (Å ³)	2489.4(2)	1880.8(6)	1856.0(2)	2928.5(5)	
Z	6	2	2	4	
Abs. coeff. (m.mm ⁻¹)	0.280	0.600	2.438	0.708	
F(000)	953.5	760.0	900.0	1440.0	
Independent refl.	2565	7775	9240	6046	
Completeness (%)	99.9	99.2	99.6	99.6	
Data/Restr/Para	2565/0/138	7775/0/443	9240/0/433	6046/0/381	
Goodness of fit on F ²	1.034	0.963	1.037	1.045	
Final R ₁ indexes	0.0376	0.0318	0.0264	0.0307	
wR ₂ indices (all data)	0.1331	0.1153	0.0524	0.0666	
Largest diffr. peak and hole (e.Å ⁻³)	0.31/-0.32	1.25/-0.97	0.47/-0.63	1.83/-1.02	

Table S1

Table S2

Complex	2	4	5	8
Emp. formula	$C_{38}H_{38}N_2F_6P_2CI_2Ru$	C ₃₈ H ₃₈ N ₂ F ₆ P ₂ Ru	$C_{34}H_{36}N_2F_6P_2Ru$	$C_{150}H_{148}N_8F_{24}P_4As_4Cl_4Ru$
Form. wt. g.mol ⁻¹)	870.61	799.71	749.66	3488.51
Crystal system	monoclinic	triclinic	monoclinic	monoclinic
Space group	P2₁/n	P-1	C2/c	P21
Crystal descr.	yellow block	yellow needle	yellow block	yellow block
a (Å)	13.8600(6)	11.0881(7)	18.0319(9)	9.910(2)
b (Å)	13.9831(7)	13.1574(8)	13.2824(6)	24.910(5)
c (Å)	18.9389(9)	14.6115(8)	29.0663(1)	15.236(3)
α (°)	90	113.867(2)	90	90
β (°)	93.545(2)	95.538(2)	99.842(2)	108.51(3)
γ (°)	90	111.568(2)	90	90
Volume (Å ³)	3663.4(3)	1735.89(2)	6859.1(6)	3566.6(1)
Z	4	2	8	1
Abs. coeff. (m.mm ⁻¹)	0.723	0.607	0.609	1.542
F(000)	1768.0	816.0	3056.0	1753.0
Independent refl.	7590	7167	7046	14652
Completeness (%)	99.7	99.9	99.8	99.7
Data/Restr/Para	7590/0/461	7167/0/443	7046/0/408	14652/1/905
Goodness of fit on F ²	1.535	1.096	1.132	0.843
Final R ₁ indexes	0.0532	0.0367	0.0351	0.0289
wR ₂ indices (all data)	0.1895	0.1288	0.0842	0.0637
Largest diffr. peak and hole (e.Å ⁻³)	1.98/-1.82	1.08/-0.87	0.73/-0.80	0.63/-0.54

Table S3	
Complex	9
Emp. formula	C15.5H16NP0.5I1.5Ru0.5
Form. weight (g.mol ⁻¹)	472.66
Crystal system	triclinic
Space group	P-1
Crystal descr.	yellow block
a (Å)	9.4358(2)
b (Å)	9.7889(2)
c (Å)	18.948(4)
α (°)	91.365(6)
β (°)	94.352(6)
γ (°)	114.451(5)
Volume (Å ³)	1585.6(5)
Z	4
Abs. coeff. (m.mm ⁻¹)	3.488
F(000)	900.0
Independent refl.	6706
Completeness (%)	98.4
Data/Restr/Para	6706/0/348
Goodness of fit on F ²	1.047
Final R ₁ indexes	0.0218
wR2 indices (all data)	0.0467
Largest diffr. peak and hole (e.Å ⁻³)	1.31/-1.27

5. Table S4: Selected bond lengths and angles for [HL5]Cl, P2,P3,1,2,4,5,8,9

Description	[H L5]CI	P2	P3	1	2	4	5	8	9
Ru1-C2	-	-	-	2.033(2)	2.042(4)	2.040(3)	2.038(3)	2.035(4)	2.033(3)
Ru1-Cg ^a	-	1.844(3)	1.813(4)	1.899(3)	1.894(3)	1.892(4)	1.889(6)	1.874(6)	1.907(7)
Ru-E1⁵	-	2.3222(7)	2.4229(2)	2.3262(6)	2.2993(1)	2.3135(7)	2.3168(6)	2.4190(7)	2.3155(8)
Ru1-C2-N1	-	-	-	120.23(2)	119.90(3)	119.95(2)	119.60(2)	119.7(3)	120.81(2)
C2-Ru1-E1 ^b	-	-	-	87.32(7)	88.98(1)	86.84(7)	87.19(7)	85.92(1)	87.51(7)
E1-Ru1-Ca ^{b,c}	-	-	-	93.99(7)	95.33(1)	95.34(7)	96.08(8)	94.50(9)	93.14(7)
C2-Ru1-Ca ^c	-	-	-	89.65(1)	89.58(1)	89.71(1)	89.66(1)	89.38(2)	89.38(1)
C2-N1-C4	125.22(1)			130.7(2)	118.0(3)	129.6(2)	118.4(2)	118.8(3)	117.6(2)
C2-N2-C8	126.14(2)	-	-	126.30(2)	127.00(3)	125.8(2)	126.4(2)	125.5(3)	126.1(2)
C2-N1-C4-C5	104.65(2)	-	-	28.3(3)	26.6(5)	24.7(3)	27.5(3)	-22.6(7)	-26.8(3)
C2-N2-C8-C9	-68.92(2)	-	-	-	-91.4(5)	-104.4(3)	-99.9(3)	100.9(7)	-

^a Cg = centroid of arene/cyclopentadienyl moiety. ^b E = P (1-7), As (8). ^c Average position between two carbon atoms belonging to the alkene moiety.

6. Time-resolved conversion profiles in the transfer hydrogenation-epoxidation catalysis

General conditions: 4'-bromophenylphenacylbromide (BPAB, 0.6 mmol), iPrOH (4 mL), KO^tBu (1.2 eq.), [Ru] (2 mol%), 110 °C. Determined by ¹H-NMR, based on the average of at least two runs.

7. Optimization of transfer hydrogenation-epoxidation conditions (Table S5)

Entry Complex	Complex	Temp	Base	Con	version ^a (Selectivity ^b (%)	
	(°C)	Dase	2h	6h	18h		
1	-	110	-	0	1	2	0:0:100
2	-	110	KO ^t Bu	0	2	3	0:0:100
3	1	110	KOH	19	31	38	49:51:0
4	1 °	110	KOH	20	36	41	90:3:7
5	1 (3 mol%)	110	KO ^t Bu	37	55	63	29:71:0
6	1 (1 mol%)	110	KO ^t Bu	21	37	43	47:53:0
7	1	110	KOH	26	44	49	43:57:0
8	1	25	КОН	7	8	9	89:11:0

Table S5: Optimization of transfer hydrogenation-epoxidation conditions.

General conditions: 4'-bromophenylphenacylbromide (BPAB, 0.6 mmol), iPrOH (4 mL), base (1.2 eq.), [Ru] (2 mol%), 110 °C. ^a Determined by ¹H-NMR, based on the average of at least two runs. ^b Selectivity (A:E:O) = alcohol:epoxide:other, after 18 hours. ^c Two equivalents of base used.

8. ¹H-NMR spectrum of catalysis reaction mixture

(2 mol%), anisole (0.6 mmol), 110 °C. Aliquot taken after 6 hours reaction time analysed using $CDCl_3$.