Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

Supporting Information

Cholesterol linked benzothiazole: A versatile gelator for detection of picric acid

and metal ions such as Ag⁺, Hg²⁺, Fe³⁺ and Al³⁺ under different conditions

Subhendu Mondal, Rameez Raza and Kumaresh Ghosh*

Department of Chemistry, University of Kalyani, Kalyani-741235, India. Email: ghosh_k2003@yahoo.co.in, kumareshchem18@klyuniv.ac.in

Table	S1·	Results	of ge	lation	test	for	1
1 ant	DI .	Results	UI SU	iation	iest	101	

Solvent	1			
CHCl ₃	S			
DCM	S			
Nitrobenzene	G (mgc = 18 mg/mL,			
	$T_{gel} = 44 \text{ °C}$			
Benzene	G (mgc = 56 mg/mL, $T_{gel} = 40 \text{ °C}$)			
1,4-Dioxane	$G (mgc = 25 mg/mL, T_{gel} = 52 \text{ °C})$			
Toluene	G (mgc = 45 mg/mL, $T_{gel} = 42 \text{ °C}$)			
МеОН	Ι			
CH ₃ CN	Ι			
$CHCl_3 - MeOH (1:1, v/v)$	Ι			
DMSO	Ι			
CHCl ₃ -PET ether $(1:1,v/v)$	Ι			
Cyclohexane	PS			
n-Hexane	Ι			
Diethyl ether I				
Acetone	PS			
THF S				
$DMF \qquad \qquad G (mgc = 10 mg/2)$				
DMF : H ₂ O (1:1, v/v)	P			
MeOH : H ₂ O (1:1, v/v) I				
CH ₃ CN : H ₂ O (1:1, v/v) I				
S = solution; G = gel; I = insoluble; PS = partially soluble; PG = partial gelation. Gelation studies were carried out by taking 60 mg of compound 1 in 1 mL of each solvent. Gels were primarily characterized by inversion of vial method after ~5 min of sample preparation.				

Fig S1. Pictorial representation of gel of 1 in (a) nitrobenzene, (b) DMF, (c) toluene and (d) benzene.

Fig S2. Photograph representing the phase change of the nitrobenzene gel of 1 (20 mg/mL) upon successive addition of 1 equiv. amount of picric (PA), trifluoroacetic acid (TFA) and Et₃N.

Fig S3. Change in (a) emission and (b) fluorescence ratio $[I-I_0/I_0]$ of **1** ($c = 2.50 \times 10^{-5} \text{ M}$) upon addition of 12 equiv. amounts of different guests ($c = 1.0 \times 10^{-3} \text{ M}$) in CH₃CN containing 1% CHCl₃.

Fig S4. Partial ¹H NMR (400 MHz) of **1** ($c = 3.07 \times 10^{-3} \text{ M}$) in absence and presence of 1 equiv. amount of PA.

Fig S5. (a) Benesai-Hildebrand plot and (b) detection limit of 1 for with picric acid ($c = 1 \ge 10^{-3} \text{ M}$) in CH₃CN containing 1% CHCl₃.

Fig S6. Partial ¹H NMR (400 MHz) of **1** ($c = 3.07 \times 10^{-3} \text{ M}$) in absence and presence of 1 equiv. amount of (a) Ag⁺ and (b) Hg²⁺ in CDCl₃.

Fig S7. Change in UV-vis spectra of **1** with addition of 3 equiv. amounts of (a) all the metal ions, (b) Fe^{2+} , (c) Cu^{2+} , (d) Ag^+ (e) Co^{2+} , (f) Ni^{2+} , (g) Zn^{2+} , (h) Cd^{2+} and (i) Cu^+ ($c = 1 \times 10^{-3} \text{ M}$) in CH₃CN containing 1% CHCl₃.

Fig S8. Change in emission of 1 with addition of 3 equiv. amounts of (a) all the metal ions, (b) Hg^{2+} , (c) Cu^{2+} and (d) Fe^{2+} ($c = 1 \times 10^{-3} \text{ M}$) in CH₃CN containing 1% CHCl₃.

Fig S9. Change in fluorescence ratios of 1 ($c = 2.5 \times 10^{-5} \text{ M}$) with (a) Fe³⁺ and (b) Al³⁺ ($c = 1 \times 10^{-3} \text{ M}$) in the absence and presence of 3 equiv. amounts of different metal ions in CH₃CN containing 1% CHCl₃.

Fig S10. Benesai-Hildebrand plots of 1 with (a) Fe^{3+} and (b) Al^{3+} ; Detection limit plots of 1 for (c) Fe^{3+} and (d) Al^{3+} ($c = 1 \times 10^{-3}$ M) in CH₃CN containing 1% CHCl₃.

Entry	Structure of compounds	Medium of Gelation	Sensing	Ref.	
1	$(1)^{4}$	Cyclohaxane and DCM/Haxane (1:4)	Detection of picric acid vapor through gel to sol transition	Langmuir 2011, 27 , 15275.	
2	N-M N-M N-M N-M N-M O O O O O O O O O O O O O O O O O O O	Toluene/DCM (8:2), Benzene/DCM (8:2) and o-Xylene/DCM (8:2)	Detection of picric acid through gel to sol transition	ACS Appl. Mater. Interfaces 2013, 5 , 672–679	
3	$H_{3}C(H_{2}C)_{15} O H H H H H H H H H H H H H H H H H H $	THF	Detection of picric acid through gel to sol transition	Appl. Mater. Interfaces 2013, 5 , 8394	
4	H_2N H_2N + CuCl ₂ H_2N	Water	Detection of picric acid through gel to sol transition	ACS Appl. Mater. Interfaces 2014, 6 , 6308	
5	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $	Nitrobenzene, Toluene, benzene and 1,2-dichlorobenzene	Detection of picric acid through gel to sol transition	<i>ChemistrySelect</i> 2017, 2 , 4800.	
6	$H_{N}^{N} = N_{N}^{N} = N_{N$	DMSO	Detection of picric acid through gel to sol transition	New J. Chem. 2018, 42 , 5382-5394	
Our Work		Nitrobenzene	Detection of picric acid through gel to sol transition		

Table S2: Reported PA sensors in gel phase

Entry	Structure	Solvent	Phase transformation in presence of Hg ²⁺ ions	Interfering metal ions	Detection limit for Hg ²⁺ (M)	Ref.
1	$\left(\begin{array}{c} 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ $	1,2- dichloroethan e	Gel to Sol	-	-	<i>Org. Lett.</i> , 2011, 13 , 3372.
2	Act Content of the second seco	1,2- dichloroethan e	Gel to Sol	-	-	New J. Chem., 2013, 37 , 2419.
3	$ \begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & $	CHCl ₃ :CH ₃ O H (2:1, v/v)	Gel to Sol	Cu ²⁺ , Ag ⁺	-	New. J. Chem., 2016, 40 , 3476.
4		0.2 N HCl	Sol to gel	-	-	<i>Chem. Commun.</i> , 2014, 50 , 734.
5	$\operatorname{cond}_N^H \operatorname{cond}_N^H$	DMSO : H_2O = (1 : 6, v/v)	Gel to Sol	Cu ²⁺ , Ag ⁺	2.02 x 10 ⁻⁶	<i>Mater. Chem.</i> <i>Front.</i> , 2018, 2 , 385.
6		$DMF : H_2O =$ (1 : 1, v/v)	Gel to Sol	Cu ²⁺	2.61 x 10 ⁻⁶	New. J. Chem., 2018, 42 , 13718- 13725
7	$\left(\begin{array}{c} \left(\begin{array}{c} 1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array} \right) \right) = \left(\begin{array}{c} \left(\begin{array}{c} 1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	DMF : H ₂ O = (1 : 1, v/v)	Sol to gel Chemodosime tric approach	-	5.71 x 10 ⁻⁶	Supramol. Chem., 2018, 30 , 722.
8	$R = -\frac{1}{2} \left(\begin{array}{c} N \\ 0 \\ 0 \\ 0 \end{array} \right)^{N} \left(\begin{array}{c} N \\ N \\ 0 \\ 0 \\ 0 \end{array} \right)^{N} \left(\begin{array}{c} N \\ 0 \\ 0 \\ 0 \\ 0 \end{array} \right)^{N} \left(\begin{array}{c} N \\ 0 \\ 0 \\ 0 \\ 0 \end{array} \right)^{N} \left(\begin{array}{c} N \\ 0 \\ 0 \\ 0 \\ 0 \end{array} \right)^{N} \left(\begin{array}{c} N \\ 0 \\ 0 \\ 0 \\ 0 \end{array} \right)^{N} \left(\begin{array}{c} N \\ 0 \\ 0 \\ 0 \\ 0 \end{array} \right)^{N} \left(\begin{array}{c} N \\ 0 \\ 0 \\ 0 \\ 0 \end{array} \right)^{N} \left(\begin{array}{c} N \\ 0 \\ 0 \\ 0 \\ 0 \end{array} \right)^{N} \left(\begin{array}{c} N \\ 0 \\ 0 \\ 0 \\ 0 \end{array} \right)^{N} \left(\begin{array}{c} N \\ 0 \\ 0 \\ 0 \\ 0 \end{array} \right)^{N} \left(\begin{array}{c} N \\ 0 \\ 0 \\ 0 \\ 0 \end{array} \right)^{N} \left(\begin{array}{c} N \\ 0 \\ 0 \\ 0 \\ 0 \end{array} \right)^{N} \left(\begin{array}{c} N \\ 0 \\ 0 \\ 0 \\ 0 \end{array} \right)^{N} \left(\begin{array}{c} N \\ 0 \\ 0 \\ 0 \\ 0 \end{array} \right)^{N} \left(\begin{array}{c} N \\ 0 \\ 0 \\ 0 \\ 0 \end{array} \right)^{N} \left(\begin{array}{c} N \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array} \right)^{N} \left(\begin{array}{c} N \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array} \right)^{N} \left(\begin{array}{c} N \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array} \right)^{N} \left(\begin{array}{c} N \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array} \right)^{N} \left(\begin{array}{c} N \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array} \right)^{N} \left(\begin{array}{c} N \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array} \right)^{N} \left(\begin{array}{c} N \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array} \right)^{N} \left(\begin{array}{c} N \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array} \right)^{N} \left(\begin{array}{c} N \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	DMF : H ₂ O = (1 : 1, v/v)	Sol to gel Chemodosime tric approach	-	5.51 x 10 ⁻⁶	New J. Chem., 2019, DOI: 10.1039/c8nj0505 6b
		Nitrobenzene	Gel to Sol	-	-	Present work

Table S3: List of different Hg²⁺ ion responsive supramolecular gelators

Entry	Structure	Solvent	Phase transformatio n in presence of Ag ⁺ ions	Interfering metal ions	Detection limit for Ag ⁺ (M)	Ref.
1	$\begin{array}{c} C_{18}H_{17} \\ & & \\ & $	EtOH	Gel to sol	-	-	<i>Tetrahedron</i> <i>Lett.</i> 2012, 53 , 1840.
2		МеОН	Sol to gel	-	-	<i>Chem.</i> <i>Commun.</i> 2013, 49 , 4181.
3	HO C17H35	MeOH:H ₂ O (1:1, v/v)	Sol to gel	-	-	<i>Supramol.</i> <i>Chem.</i> 2014, 26 , 39.
4		THF/ H ₂ O	Sol to gel	-	-	<i>Soft Matter</i> , 2011, 7 , 2412.
5		H ₂ O	Sol to gel	-	-	<i>Soft Matter</i> , 2012, 8 , 6557.
6		DMF: H ₂ O (2:3, v/v)	Sol to gel	-	-	<i>Cryst.</i> <i>Growth Des.</i> 2015, 15 , 4635.
7	$\begin{array}{c} & & & & \\ C_{12}H_{25}HN & & & C \\ & & & & C \\ & & & & C \\ & & & &$	CH ₂ Cl ₂ , CHCl ₃ , THF	Sol to gel	-	-	<i>Langmuir</i> , 2012, 28 , 27.
8	$R = \underbrace{\begin{array}{c} HO \\ P \\ R \\ R$	Toluene: EtOH (99:1, v/v)	Sol to gel	-	-	Chem. Commun. 2015, 51 , 13929.
9	$R = \frac{1}{2} \frac{0}{100} \frac{0}{100} \frac{0}{100} \frac{1}{100} $	DMF, DMF/ H ₂ O, DMSO/ H ₂ O	Sol to gel	-	-	<i>Cryst.</i> <i>Growth Des.</i> 2015, 15 , 5360.
10	$R^{+} NH \qquad HN^{+} R$	EtOAc	Gel to sol	Li+	-	<i>Chem.</i> <i>Commun.</i> 2012, 48 , 2767.

Table S4: List of different Ag⁺ ion responsive supramolecular gelators

11	HO = HO = HO	DMF : H ₂ O (1:1, v/v)	Sol to gel	-	4.31 x 10 ⁻⁵	<i>ChemistrySe</i> <i>lect</i> , 2017, 2 , 959.
12	$\begin{array}{c} X \\ Y \\ Y \\ Z \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	DMSO: H ₂ O	Sol to gel	-	-	Dalton Trans., 2017, 46 , 2793.
13	$N \longrightarrow NH \longrightarrow OC_{16}H_{33}$	Toluene/eth anol (10:1, v/v)	Sol to gel	-	-	<i>Langmuir,</i> 2007, 23 , 8217.
14	$R = \frac{1}{2} \left(\begin{array}{c} H \\ H \end{array} \right) \left(\begin{array}{c} H \\ H \\ H \end{array} \right) \left(\begin{array}{c} H \\ H \\ H \end{array} \right) \left(\begin{array}{c} H \\ H \\ H \end{array} \right) \left(\begin{array}{c} H \\ H \\ H \\ H \end{array} \right) \left(\begin{array}{c} H \\ H \\ H \\ H \\ H \\ H \end{array} \right) \left(\begin{array}{c} H \\ H $	Diphenyl ether	Sol to gel	-	-	<i>Chem. Lett.</i> , 2003, 32 , 12.
15		THF-H ₂ O (3 : 2)	Sol to gel	-	-	New J. Chem., 2010, 34 , 2261.
16		H ₂ O	Sol to gel	-	-	New J. Chem., 2014, 38 , 2470.
17	$R = \frac{1}{2} O \left(\begin{array}{c} & & & \\ & & & $	CHCl ₃ :CH ₃ OH (2:1, v/v)	Gel to Sol	Cu ²⁺ , Hg ²⁺	-	New. J. Chem., 2016, 40 , 3476.
18		DMSO: H ₂ O (1:1, v/v)	Sol to gel	Cu ²⁺	-	New. J. Chem., 2018, 42 , 6488.
19		DMSO: H ₂ O	Gel to sol	Cu ²⁺	3.69 x 10 ⁻⁶	
	$ \qquad \qquad$	DMSO: H ₂ O	Gel to sol	Cu ²⁺ , Hg ²⁺	3.34 x 10 ⁻⁶	Mater. Chem. Front., 2018,
		DMSO: H ₂ O	Sol to gel	-	1.93 x 10 ⁻⁷	2, 385.
		DMSO: H ₂ O	Sol to gel	-	1.28 x 10 ⁻⁶	

20	R H	1,4-	Gel to sol	-	3.27 x 10 ⁻⁵	
	$R = -\frac{5}{5} \left(\begin{array}{c} 0 \\ H \\ H \\ H \end{array} \right) \left(\begin{array}{c} 0 \\ H \\ H \\ H \\ H \\ H \end{array} \right) \left(\begin{array}{c} 0 \\ H \\$	dioxane- MeOH (1:1, v/v) 1,4- dioxane- H ₂ O (1:1, v/v)	Sol to gel	-	9.27 x 10 ⁻⁵	New J. Chem., 2019, DOI: 10.1039/c8nj 05056b
		Nitrobenze ne	Gel to Sol	-		Present work

¹³C NMR (CDCl₃, 100 MHz) of 1

Mass spectrum of 1.

¹³C NMR (CDCl₃ containing 8% *d*₆-DMSO, 100 MHz) of 3

Mass spectrum of 3

