Supporting information of

A fluoride selective water-soluble anion receptor based on 1,2-Phenylenediacetic acid and calcium ion dimer.

Dae Hyup Sohn, Nayeon Kim, Soonmin Jang, *Jongmin Kanga, *
Department of Chemistry, Sejong University, Seoul 143-747, South Korea

Contents

1. General information (page S2)
2. Determination of association constants (page S3)
Figure S1. ${ }^{1} \mathrm{H}$ NMR spectrum of receptor 1 (page S4)
Figure S2. ${ }^{13} \mathrm{C}$ NMR spectrum of receptor $\mathbf{1}$ (page S4)
Figure S3. ESI-MS spectrum of receptor 1 (page S5)
Figure S4. ${ }^{1} \mathrm{H}$ NMR spectra of 2 mM of receptor $\mathbf{1}$ increasing amounts of tetrabutylammoniumfluoride in $100 \% \mathrm{D}_{2} \mathrm{O}$(page S5)Figure S5. Family of UV-vis spectra recorded over the course of titration of $20 \mu \mathrm{M}_{2} \mathrm{O}$solution of the receptor $\mathbf{1}$ with the standard solution tetrabutylammonium fluoride ${ }^{\cdots}$ (page S 5)Figure S6. ${ }^{1} \mathrm{H}$ NMR spectra of 2 mM of receptor $\mathbf{1}$ increasing amounts of sodium fluoride in100 \% $\mathrm{D}_{2} \mathrm{O}$(page S6)Figure S7. Family of UV-vis spectra recorded over the course of titration of $20 \mu \mathrm{M}_{2} \mathrm{O}$solution of the receptor $\mathbf{1}$ with the standard solution sodium fluoride(page S 6)
Figure S8. ${ }^{1} \mathrm{H}$ NMR spectra of 2 mM of receptor $\mathbf{1}$ increasing amounts of CaCl_{2} in 100%(page S7)

Figure S9. ${ }^{1} \mathrm{H}$ NMR spectra of 2 mM of receptor $\mathbf{1}$ increasing amounts of CaBr_{2} in $\mathrm{D}_{2} \mathrm{O}$

Figure S10. ${ }^{1} \mathrm{H}$ NMR spectra of 2 mM of receptor $\mathbf{1}$ increasing amounts of CaI_{2} in $\mathrm{D}_{2} \mathrm{O}$

Figure S11. ${ }^{1} \mathrm{H}$ NMR spectra of 2 mM of receptor $\mathbf{1}$ increasing amounts of monocalcium phosphate in $\mathrm{D}_{2} \mathrm{O}$
Figure S12. Job's plot of receptor $\mathbf{1}$ with dihydrogen phosphate obtained by ${ }^{1} \mathrm{H}$ NMR in $\mathrm{D}_{2} \mathrm{O}$
(page S8)
Figure S13. ${ }^{1} \mathrm{H}$ NMR spectra of 2 mM of receptor $\mathbf{1}$ increasing amounts of tetrabutylammonium cyanide in $\mathrm{D}_{2} \mathrm{O}$ (page S8)

Figure S14. ${ }^{1} \mathrm{H}$ NMR spectra of 2 mM of receptor $\mathbf{1}$ increasing amounts of tetrabutylammonium nitrate in $\mathrm{D}_{2} \mathrm{O}$

Figure S15. ${ }^{1} \mathrm{H}$ NMR spectra of 2 mM of receptor $\mathbf{1}$ increasing amounts of tetrabutylammonium perchlorate in $\mathrm{D}_{2} \mathrm{O}$
(page S9)
3. Detailed structural information of complexes obtained from electronic structure calculations (structure files including atomic charges in mol2 format)
(page S10)

1. General information

Absorption spectra were recorded using biochrom Libra S70 spectrophotometer (Biochrom Ltd, England). NMR spectra were recorded using a BRUKER spectrometer operated at 500 MHz. ESI-MS spectrum was obtained using ESI Q-TOF Mass Spectrometer (Model : compact / Company : Bruker) at Sogang University. All measurements were carried out at room temperature (298 K). Calcium fluoride, tetrabutylammonium fluoride, calcium chloride, calcium bromide, and calcium iodide were purchased from Sigma Aldrich Chemical Co., Inc., and used as received.

2. Determination of association constants

We calculated association constants using non-linear regression method. Validity of the quantity of binding affinity is verified in regression coefficient by least square method. (Thordarson, P. Chem. Soc. Rev., 2011, 40, 1305-1323.)

a. UV-vis Spectroscopy

$\Delta A=\frac{1+a K_{a}+x K_{a}-\sqrt{-4 a x K_{a}^{2}+\left(-1-a K_{a}-x K_{a}\right)^{2}}}{2 K_{a}} \Delta \varepsilon$
where ΔA (measured change in absorbance relative to the initial solution) is the y variable; x is concentration of anion added; a is the initial concentration of receptor (held constant over the course of titration); $\Delta \varepsilon$ is the extinction coefficient difference between the free receptor and receptor-guest complex; K_{a} is the binding affinity of the receptor for the guest in question.

b. NMR Spectroscopy

$$
\Delta \delta=\frac{1+a K_{a}+x K_{a}-\sqrt{-4 a x K_{a}^{2}+\left(-1-a K_{a}-x K_{a}\right)^{2}}}{2 a K_{a}} \delta_{\Delta H G}
$$

where $\Delta \delta$ (measured change in chemical shift relative to the initial solution) is the y variable; x is concentration of anion added; a is the initial concentration of receptor (held constant over the course of titration); $\delta_{\Delta H G}$ is the difference of chemical shift between the free receptor and receptor-guest complex; K_{a} is the binding affinity of the receptor for the guest in question.

Figure S1. ${ }^{1} \mathrm{H}$ NMR spectrum of receptor $\mathbf{1}$.

Figure S2. ${ }^{13} \mathrm{C}$ NMR spectrum of receptor 1 .

Figure S3. ESI-MS spectrum of receptor 1.

Figure S4. ${ }^{1} \mathrm{H}$ NMR spectra of 2 mM of receptor $\mathbf{1}$ increasing amounts of tetrabutylammonium fluoride in $100 \% \mathrm{D}_{2} \mathrm{O}$

Figure S5. Family of UV-vis spectra recorded over the course of titration of $20 \mu \mathrm{M} \mathrm{D}_{2} \mathrm{O}$ solution of the receptor $\mathbf{1}$ with the standard solution tetrabutylammonium fluoride

Figure S6. ${ }^{1} \mathrm{H}$ NMR spectra of 2 mM of receptor $\mathbf{1}$ increasing amounts of sodium fluoride in $100 \% \mathrm{D}_{2} \mathrm{O}$

Figure S7. Family of UV-vis spectra recorded over the course of titration of $20 \mu \mathrm{M} \mathrm{D}_{2} \mathrm{O}$ solution of the receptor $\mathbf{1}$ with the standard solution sodium fluoride

Figure S8. ${ }^{1} \mathrm{H}$ NMR spectra of 2 mM of receptor $\mathbf{1}$ amounts of CaCl_{2} in $100 \% \mathrm{D}_{2} \mathrm{O}$

Figure S9. ${ }^{1} \mathrm{H}$ NMR spectra of 2 mM of receptor $\mathbf{1}$ increasing amounts of CaBr_{2} in $\mathrm{D}_{2} \mathrm{O}$

Figure S10. ${ }^{1} \mathrm{H}$ NMR spectra of 2 mM of receptor $\mathbf{1}$ increasing amounts of CaI_{2} in $\mathrm{D}_{2} \mathrm{O}$

Figure S11. ${ }^{1} \mathrm{H}$ NMR spectra of 2 mM of receptor $\mathbf{1}$ increasing amounts of monocalcium phosphate in $\mathrm{D}_{2} \mathrm{O}$

Figure S12. Job's plot of receptor $\mathbf{1}$ with dihydrogen phosphate obtained by ${ }^{1} \mathrm{H}$ NMR in $\mathrm{D}_{2} \mathrm{O}$.

Figure S13. ${ }^{1} \mathrm{H}$ NMR spectra of 2 mM of receptor $\mathbf{1}$ increasing amounts of tetrabutylammonium cyanide in $\mathrm{D}_{2} \mathrm{O}$

Figure S14. ${ }^{1} \mathrm{H}$ NMR spectra of 2 mM of receptor 1 increasing amounts of tetrabutylammonium nitrate in $\mathrm{D}_{2} \mathrm{O}$

Figure S15. ${ }^{1} \mathrm{H}$ NMR spectra of 2 mM of receptor 1 increasing amounts of tetrabutylammonium perchlorate in $\mathrm{D}_{2} \mathrm{O}$
3. Detailed structural information of complexes including atomic charges obtained from electronic structure calculations ($\mathrm{F}^{-}, \mathrm{Cl}^{-}$, and Br^{-}complex respectively). The assigned atomic charges are based on Mulliken population analysis.
@ <TRIPOS>MOLECULE
generated by VMD
$\begin{array}{lllll}47 & 54 & 1 & 0 & 0\end{array}$

SMALL

CHARGES

Energy $=0$
@ <TRIPOS>ATOM

1	C1	-4.5063	0.4290	1.0041	C	0	0	0.772000
2	C2	-4.8176	-0.2623	-0.1918	C	0	0	0.691000
3	C3	-6.1620	-0.5601	-0.4591	C	0	0	-0.458000
4	C4	-7.1945	-0.1924	0.4011	C	0	0	-0.425000
5	C5	-6.8907	0.5059	1.5653	C	0	0	-0.477000
6	C6	-5.5595	0.8011	1.8523	C	0	0	-0.441000
7	H7	-6.4032	-1.0879	-1.3766	H	0	0	0.158000
8	H8	-8.2210	-0.4431	0.1571	H	0	0	0.185000
9	H9	-7.6754	0.8132	2.2479	H	0	0	0.186000
10	H10	-5.3234	1.3305	2.7702	H	0	0	0.155000
11	C11	-3.0996	0.7015	1.4957	C	0	0	-0.110000
12	H12	-3.1425	1.0536	2.5292	H	0	0	0.240000

14	C14	-3.8128	-0.6121	-1.2710	C	0	0	-0.196000
15	H15	-4.3481	-0.9073	-2.1755	H	0	0	0.236000
16	H16	-3.2554	0.2951	-1.5275	H	0	0	0.252000
17	C17	-2.1616	1.6550	0.7540	C	0	0	-0.496000
18	O18	-1.0532	1.8941	1.3308	0	0	0	-0.364000
19	O19	-2.4266	2.1058	-0.3954	0	0	0	-0.415000
20	C20	-2.7220	-1.6612	-1.0435	C	0	0	-0.430000
21	021	-2.3566	-1.9991	0.1192	0	0	0	-0.395000
22	O 22	-2.1257	-2.0803	-2.0827	O	0	0	-0.402000
23	C23	7.1945	0.1925	0.4010	C	0	0	-0.425000
24	C24	6.8907	-0.5062	1.5650	C	0	0	-0.447000
25	C25	5.5596	-0.8016	1.8519	C	0	0	-0.441000
26	C26	4.5063	-0.4293	1.0038	C	0	0	0.772000
27	C27	4.8176	0.2624	-0.1919	C	0	0	0.691000
28	C28	6.1619	0.5604	-0.4591	C	0	0	-0.458000
29	H29	8.2210	0.4433	0.1571	H	0	0	0.185000
30	H30	7.6754	-0.8136	2.2475	H	0	0	0.186000
31	H31	5.3235	-1.3312	2.7696	H	0	0	0.155000
32	H32	6.4031	1.0884	-1.3764	H	0	0	0.158000
33	C33	3.8127	0.6125	-1.2709	C	0	0	-0.196000
34	H34	4.3480	0.9079	-2.1754	H	0	0	0.236000
35	H35	3.2553	-0.2946	-1.5276	H	0	0	0.252000
36	C36	3.0997	-0.7020	1.4954	C	0	0	-0.110000
37	H37	3.1426	-1.0543	2.5287	H	0	0	0.240000
38	H38	2.5540	0.2460	1.5175	H	0	0	0.245000
				S11				

39	C39		2.7219	1.6615	-1.0432	C	0	0	0.430000
40	O 40		2.1256	2.0810	-2.0822	0	0	0	-0.402000
41	O41		2.3565	1.9991	0.1197	0	0	0	-0.395000
42	C42		2.1618	-1.6555	0.7534	C	0	0	-0.495000
43	O43		1.0535	-1.8952	1.3303	0	0	0	0.364000
44	O44		2.4266	-2.1057	-0.3962	O	0	0	-0.415000
	Ca45		-0.0508	-2.1791	-0.7822	Ca	0	0	1.258000
	Ca46		0.0508	2.1793	-0.7817	Ca	0	0	1.258000
47	F47		0.0000	0.0002	-1.0921	F	0	0	-0.535000
@<TRIPOS>BOND									
1	1	2	1						
2	1	6	1						
3	1	11	1						
4	2	3	1						
5	2	14	1						
6	3	4	1						
7	3	7	1						
8	4	5	1						
9	4	8	1						
10	5	6	1						
11	5	9	1						
12	6	10	1						
13	11	12	1						
14	11	13	1						

```
15}111\quad17\quad
16 14 15 1
17 14 16 1
18 14 20 1
19 17 18 2
20 17 19 2
21 18 46 1
22 19 46 1
23 20 21 2
24 20 22 2
25 21 45 1
26 22 45 1
27 23 24 1
28 23 28 1
29 23 29 1
30 24 25 1
31 24 30 1
32 25 26 1
33 25 31 1
34 26 27 1
35 26 36 1
36 27 28 1
37 27 33 1
38 28 32 1
39 33 34 1
```

40	33	35	1
41	33	39	1
42	36	37	1
43	36	38	1
44	36	42	1
45	39	40	2
46	39	41	2
47	40	46	1
48	41	46	1
49	42	43	2
50	42	44	2
51	43	45	1
52	44	45	1
53	45	47	1
54	46	47	1

@<TRIPOS>SUBSTRUCTURE
1 **** 1 TEMP 0 **** **** 0 ROOT
@<TRIPOS>MOLECULE
generated by VMD
470010

SMALL

CHARGES

Energy $=0$
@<TRIPOS>ATOM

1	C	3.4680	-1.4800	-0.9490	C	0	0.662000
2	C	4.1200	-0.8590	0.1380	C	0	0.419000
3	C	5.2630	-1.4550	0.6790	C	0	-0.418000
4	C	5.7750	-2.6460	0.1660	C	0	-0.442000
5	C	5.1380	-3.2580	-0.9100	C	0	-0.392000
6	C	3.9940	-2.6740	-1.4540	C	0	-0.213000
7	H	5.7630	-0.9740	1.5140	H	0	0.176000
8	H	6.6640	-3.0880	0.6040	H	0	0.189000
9	H	5.5230	-4.1830	-1.3230	H	0	0.191000
10	H	3.4960	-3.1550	-2.2900	H	0	0.168000
11	C	2.2090	-0.9000	-1.5570	C	0	-0.407000
12	H	1.8050	-1.6140	-2.2810	H	0	0.248000
13	H	1.4380	-0.7650	-0.7950	H	0	-0.073000
14	C	3.6280	0.4560	0.7060	C	0	-0.371000
15	H	4.3500	0.8220	1.4430	H	0	0.221000
16	H	3.5630	1.2220	-0.0690	H	0	0.284000
17	C	2.3900	0.4330	-2.3280	C	0	-0.109000
18	O	1.5250	1.3460	-2.0880	O	0	-0.395000
19	O	3.3210	0.5260	-3.1440	O	0	-0.432000
				S15			0

20	C	2.2850	0.4020	1.4300	C	0	-0.175000
21	0	1.4540	1.3590	1.2410	0	0	-0.356000
22	0	2.0170	-0.5380	2.2160	0	0	-0.339000
23	C	-5.8420	-1.0450	-2.0810	C	0	-0.449000
24	C	-5.2380	-2.2940	-2.1880	C	0	-0.382000
25	C	-4.1010	-2.5750	-1.4300	C	0	-0.231000
26	C	-3.5490	-1.6310	-0.5580	C	0	0.583000
27	C	-4.1660	-0.3660	-0.4470	C	0	0.463000
28	C	-5.3040	-0.0950	-1.2130	C	0	-0.129000
29	H	-6.7260	-0.8090	-2.6640	H	0	0.189000
30	H	-5.6430	-3.0460	-2.8560	H	0	0.192000
31	H	-3.6280	-3.5480	-1.5180	H	0	0.167000
32	H	-5.7780	0.8770	-1.1250	H	0	0.176000
33	C	-3.6410	0.6880	0.5050	C	0	-0.310000
34	H	-4.3420	1.5280	0.5320	H	0	0.221000
35	H	-3.5770	0.3020	1.5240	H	0	0.278000
36	C	-2.2980	-1.9750	0.2220	C	0	-0.425000
37	H	-1.9310	-2.9510	-0.1100	H	0	0.243000
38	H	-1.5030	-1.2580	0.0100	H	0	-0.102000
39	C	-2.2840	1.2880	0.1370	C	0	-0.227000
40	0	-2.0420	1.6420	-1.0390	0	0	-0.308000
41	0	-1.4180	1.4480	1.0690	0	0	-0.339000
42	C	-2.4780	-2.0840	1.7570	C	0	-0.082000
43	0	-1.5980	-1.4880	2.4720	0	0	-0.419000
44	0	-3.4220	-2.7550	2.2010	0	0	-0.432000
				S16			

45	Ca	-0.2360	0.2900	2.7340	Ca	0	1.356000
46	Ca	0.2650	2.4070	-0.5210	Ca	0	1.038000
47	Cl	0.2980	5.1070	-0.1200	Cl	0	-0.775000

@<TRIPOS>SUBSTRUCTURE
$1^{* * * *} 1$ TEMP $0^{* * * * ~ * * * * ~} 0$ ROOT
@<TRIPOS>MOLECULE
generated by VMD
4700100
SMALL
CHARGES

Energy $=0$
@<TRIPOS>ATOM

1	C	-4.5070	-1.4860	-0.6340	C	0	-0.028000
2	C	-4.7730	-0.2080	-0.0890	C	0	0.236000
3	C	-6.0720	0.3070	-0.1910	C	0	0.031000
4	C	-7.1080	-0.4050	-0.7920	C	0	-0.511000
5	C	-6.8530	-1.6720	-1.3070	C	0	-0.507000
6	C	-5.5630	-2.1920	-1.2260	C	0	-0.123000
7	H	-6.2770	1.2900	0.2210	H	0	0.182000
8	H	-8.1010	0.0280	-0.8520	H	0	0.187000
9	H	-7.6440	-2.2490	-1.7730	H	0	0.189000
10	H	-5.3630	-3.1740	-1.6430	H	0	0.157000
11	C	-3.1270	-2.1030	-0.7170	C	0	0.000000
12	H	-3.2000	-3.0810	-1.2040	H	0	0.236000
13	H	-2.4960	-1.5050	-1.3830	H	0	0.236000
14	C	-3.7730	0.6050	0.7170	C	0	0.164000
15	H	-4.2010	1.5980	0.8860	H	0	0.189000
16	H	-3.6450	0.1330	1.6900	H	0	0.236000

17	C	-2.2940	-2.3140	0.5490	C	0	-0.387000
18	0	-1.0700	-2.6150	0.3600	0	0	-0.323000
19	0	-2.7660	-2.1230	1.6990	0	0	-0.390000
20	C	-2.3790	0.8630	0.1500	C	0	-0.459000
21	0	-1.3740	0.5490	0.8870	0	0	-0.294000
22	0	-2.2130	1.4290	-0.9520	0	0	-0.340000
23	C	6.8880	-1.7560	-0.0830	C	0	-0.506000
24	C	6.5280	-2.2330	-1.3390	C	0	-0.518000
25	C	5.2170	-2.0650	-1.7800	C	0	-0.110000
26	C	4.2410	-1.4230	-1.0050	C	0	0.003000
27	C	4.6140	-0.9200	0.2640	C	0	0.162000
28	C	5.9330	-1.1080	0.6980	C	0	0.003000
29	H	7.8980	-1.8820	0.2890	H	0	0.187000
30	H	7.2530	-2.7350	-1.9690	H	0	0.188000
31	H	4.9340	-2.4520	-2.7540	H	0	0.170000
32	H	6.2200	-0.7260	1.6730	H	0	0.183000
33	C	3.7130	-0.0760	1.1500	C	0	0.150000
34	H	4.1960	0.0290	2.1270	H	0	0.191000
35	H	3.6320	0.9220	0.7200	H	0	0.223000
36	C	2.8250	-1.4160	-1.5420	C	0	-0.061000
37	H	2.8200	-1.8630	-2.5410	H	0	0.227000
38	H	2.1990	-2.0760	-0.9340	H	0	0.231000
39	C	2.2980	-0.5550	1.4530	C	0	-0.301000
40	0	2.0750	-1.7080	1.8910	0	0	-0.378000
41	0	1.3440	0.2880	1.3010	0	0	-0.329000
				S19			

42	C	2.0450	-0.1030	-1.6580	C	0	-0.318000
43	O	0.7940	-0.2180	-1.8610	O	0	-0.295000
44	O	2.5960	1.0160	-1.4910	O	0	-0.356000
45	Ca	0.3450	1.6360	-0.4370	Ca	0	1.138000
46	Ca	-0.3960	-1.2140	2.1430	Ca	0	1.290000
47	Br	0.5890	4.5120	0.0840	Br	0	-0.864000

@<TRIPOS>SUBSTRUCTURE
1 ****
1 TEMP
0 **** **** 0 ROOT

