SUPPLEMENTARY INFORMATION

Photophysics of Proton Transfer in Hydrazides: A Combined Theoretical and Experimental Analysis towards OLED Device Application

Makesh Mohan ^a, M. N. Satyanarayan ^{a,*} and Darshak R. Trivedi ^{b,*}

^a Optoelectronics Laboratory, Department of Physics, National Institute of Technology Karnataka (NITK) Surathkal, Mangalore-575025.

^b Supramolecular Chemistry Laboratory, Department of Chemistry, National Institute of Technology Karnataka (NITK) Surathkal, Mangalore-575025

*Author to whom correspondence should be addressed Email: satya_mn@nitk.edu.in, darshak_rtrivedi@yahoo.co.in Tel: +91-824-2473295

SI.No	Fig/Table No	Contents	
1	S1	FT-IR spectra of T2	
2	S2	FT-IR spectra of P2	
3	S3	FT-IR spectra of F2	
4	S4	FT-IR spectra of T3	
5	S5	FT-IR spectra of P3	
6	S6	FT-IR spectra of F3	
7	S7	¹ H NMR spectra of T2	
8	S8	¹ H NMR spectra of P 2	
9	S9	¹ H NMR spectra of F2	
10	S10	¹ H NMR spectra of T3	
11	S11	¹ H NMR spectra of P3	
12	S12	¹ H NMR spectra of F3	
13	S13	ESI-MS spectra of T2	
14	S14	ESI-MS spectra of P2	
15	S15	ESI-MS spectra of F2	

16	S16	ESI-MS spectra of T3
17	S17	ESI-MS spectra of P3
18	S18	ESI-MS spectra of F3
19	S19	UV-Vis absorbance spectra of molecule T2 in solvent of varying polarity
20	S20	UV-Vis absorbance spectra of molecule P2 in solvent of varying polarity
21	S21	UV-Vis absorbance spectra of molecule F2 in solvent of varying polarity
22	S22	UV-Vis absorbance spectra of molecule T3 in solvent of varying polarity
23	S23	UV-Vis absorbance spectra of molecule P3 in solvent of varying polarity
24	S24	UV-Vis absorbance spectra of molecule F3 in solvent of varying polarity
25	S25	Solid State UV-Vis absorbance spectra of all the molecules of the series
26	S26	PL spectra of molecule T2 in solvent of varying polarity.
27	S27	PL spectra of molecule P2 in solvent of varying polarity.
28	S28	PL spectra of molecule F2 in solvent of varying polarity.
29	S29	PL spectra of molecule T3 in solvent of varying polarity.
30	S30	PL spectra of molecule P3 in solvent of varying polarity.
31	S31	PL spectra of molecule F3 in solvent of varying polarity.
32	S32	Fluorescence emission spectrum of T2 with varying f_w and inset gives the intensity value with varying f_w
33	S33	Fluorescence emission spectrum of P2 with varying f_w and inset gives the intensity value with varying f_w
34	S34	Fluorescence emission spectrum of F2 with varying f_w and inset gives the intensity value with varying f_w
35	S35	Fluorescence emission spectrum of T3 with varying f_w and inset gives the intensity value with varying f_w
36	S36	Fluorescence emission spectrum of P3 with varying f_w and inset gives the intensity value with varying f_w
37	S 37	Vibrational stretching frequency of all the molecules in SOS_0 and SIS_1 states; specifically focusing N-H stretching frequency
38	S38	Single point energies of molecule $P2$ in the S_0 and S_1 states calculated by B3LYP and CAM-B3LYP
39	S 39	Single point energies of molecule $F2$ in the S_0 and S_1 states calculated by B3LYP and CAM-B3LYP
40	S40	Single point energies of molecule T3 in the S_0 and S_1 states calculated by B3LYP and CAM-B3LYP

41	S41	Single point energies of molecule P3 in the S_0 and S_1 states calculated by B3LYP and CAM-B3LYP
42	Table S1	Vibrational –NH stretching frequency of all molecules at state S_0 and S_1
43	Table S2	Computed optical parameters of molecules, keto absorbance and emission, enol emission, oscillator strengths, composition and CI(%) calculated at DFT/B3LYP and TD-DFT/CAM-B3LYP for ground and excited state

Characterization details

T2: (*E*)-*N*-([2,2'-bithiophen]-5-ylmethylene)thiophene-2-carbohydrazide

Yield: 76 %, melting point: 210 °C, ¹H NMR (DMSO- d_6 , 400 MHz, ppm): δ 11.88 (br. s; 1H), 8.59 (s; 1H), 8.01 (m; 1H), 7.89 (br. s; 1H), 7.6 (d; J=4.8, 1H), 7.45 (d; J = 3.8, 1H), 7.33 (d; J = 3.8; 1H), 7.23 (dd; J=4.8, 1H), 7.14 (dd; J=4.9, 3.8, 1H), FTIR (ATR) (cm⁻¹): 3186 (NH), 1622 (CH=N), ESI-MS Calculated: 318.00, Obtained: 318.90(M+H⁺).

P2: (*E*)-*N*-([2,2'-bithiophen]-5-ylmethylene)nicotinohydrazide

Yield: 79 %, melting point: 234 0 C, ¹H NMR (DMSO- d_{6} , 400 MHz, ppm): δ 12.03 (s; 1H), 9.05 (m; 1H), 8.77 (m; 1H), 8.6 (s; 1H), 8.25 (s; 1H), 7.59 (m; 2H), 7.47 (dd; J = 6.7, 3.7; 2H), 7.34 (d; J = 3.7; 1H), 7.14 (s; 1H), FTIR (ATR) (cm⁻¹): 1638 (CH=N), ESI-MS Calculated: 313.39, Obtained: 313.95(M+H⁺).

F2: (*E*)-*N*-([2,2'-bithiophen]-5-ylmethylene)furan-2-carbohydrazide

Yield: 82%, melting point: 221 0 C, 1 H NMR (DMSO- d_{6} , 400 MHz, ppm): δ 11.90 (br. s; 1H), 8.61 (br. s; 1H), 7.96 (s; 1H), 7.6 (d; J = 5; 1H), 7.46 (d; J = 3.5, 1H), 7.43 (d; J = 3.8, 1H), 7.32 (m; 2H), 7.15 (m; 1H), 6.72 (br.s; 1H), FTIR (ATR) (cm⁻¹): 3224 (NH), 3065 (Ar-CH), 1640 (CH=N), ESI-MS Calculated: 302.02, Obtained: 303.00(M+H⁺).

T3: N', N'''-((1*E*, 1'*E*)-thiophene-2,5-diylbis(methaneylylidene))bis(thiophene-2-carbo hydrazide)

Yield: 72 %, melting point: 252 °C, ¹H NMR (DMSO- d_6 , 400 MHz, ppm): δ 7.24 (br. s; 2H), 7.49 (s; 2H), 7.9 (br. s; 2H), 8.06 (d; J = 1.7; 2H), 8.27 (br. s; 1H), 8.65 (br. s; 1H), 11.98 (br. s; 2H). FTIR (ATR) (cm⁻¹): 2939 (NH), 2902 (Ar-CH), 1641 (CH=N). ESI-MS Calculated: 388.48, Obtained: 389(M+H⁺).

P3: *N*',*N*'''-((1*E*,1'*E*)-thiophene-2,5-diylbis(methaneylylidene))di(nicotinohydrazide) Yield: 78%, melting point: 276 °C, ¹H NMR (DMSO- d_6 , 400 MHz, ppm): δ 7.58 (m; 4H), 8.26 (d; *J* = 8.1, 2H), 8.66 (s; 2H), 8.78 (m; 2H), 9.06 (s; 2H), 12.12 (m; 2H). FTIR (ATR) (cm⁻¹): 3209 (NH), 3054 (Ar-CH), 1639 (CH=N). ESI-MS Calculated: 378.41, Obtained: 379.10(M+H⁺).

F3: N', N'''-((1E, 1'E)- thiophene- 2,5-diylbis (methaneylylidene)) bis (furan-2-carbo hydrazide)

Yield: 76 %, melting point: 260 0 C, ¹H NMR (DMSO- d_{6} , 400 MHz, ppm): δ 6.76 (m; 2H), 7.34 (m; 2H), 7.53 (m; 2H), 7.97 (br. s; 2H), 8.65 (br. s; 2H), 11.98 (br. s; 1H), 11.89 (m; 1H). FTIR (ATR) (cm⁻¹): 3135 (NH), 1604 (CH=N). ESI-MS Calculated: 356.36, Obtained: 357(M+H⁺).

Figure S1. FT-IR spectra of T2

Figure S2. FT-IR spectra of P2

Figure S3. FT-IR spectra of F2

Figure S4. FT-IR spectra of T3

Figure S5. FT-IR spectra of P3

Figure S6. FT-IR spectra of F3

Figure S7. ¹H NMR spectra of T2

Figure S8. ¹H NMR spectra of P2

Figure S9. ¹H NMR spectra of F2

Figure S10. ¹H NMR spectra of T3

Figure S11. ¹H NMR spectra of P3

Figure S12. ¹H NMR spectra of F3

Figure S13. ESI-MS spectra of T2

Figure S14. ESI-MS spectra of P2

Figure S15. ESI-MS spectra of F2

Figure S16. ESI-MS spectra of T3

Figure S17. ESI-MS spectra of P3

Figure S18. ESI-MS spectra of F3

Figure S19. UV-Vis absorbance spectra of molecule T2 in solvent of varying polarity.

Figure S20. UV-Vis absorbance spectra of molecule P2 in solvent of varying polarity.

Figure S21. UV-Vis absorbance spectra of molecule F2 in solvent of varying polarity.

Figure S22. UV-Vis absorbance spectra of molecule T3 in solvent of varying polarity.

Figure S23. UV-Vis absorbance spectra of molecule P3 in solvent of varying polarity.

Figure S24. UV-Vis absorbance spectra of molecule F3 in solvent of varying polarity.

Figure S25. Solid State UV-Vis absorbance spectra of all the molecules of the series

Figure S26. PL spectra of molecule T2 in solvent of varying polarity.

Figure S27. PL spectra of molecule P2 in solvent of varying polarity.

Figure S28. PL spectra of molecule F2 in solvent of varying polarity.

Figure S29. PL spectra of molecule T3 in solvent of varying polarity.

Figure S30. PL spectra of molecule P3 in solvent of varying polarity.

Figure S31. PL spectra of molecule F3 in solvent of varying polarity.

Figure S32. Fluorescence emission spectrum of **T2** with varying f_w and inset gives the intensity value with varying f_w

Figure S33. Fluorescence emission spectrum of **P2** with varying f_w and inset gives the intensity value with varying f_w

Figure S34. Fluorescence emission spectrum of **F2** with varying f_w and inset gives the intensity value with varying f_w

Figure S35. Fluorescence emission spectrum of **T3** with varying f_w and inset gives the intensity value with varying f_w

Figure S36. Fluorescence emission spectrum of **P3** with varying f_w and inset gives the intensity value with varying f_w

Figure S37. Vibrational stretching frequency of all the molecules in S₀ and S₁ states; specifically focusing N-H stretching frequency

Figure S38. Single point energies of molecule P2 in the S_0 and S_1 states calculated by B3LYP and CAM-B3LYP

Figure S39. Single point energies of molecule F2 in the S_0 and S_1 states calculated by B3LYP and CAM-B3LYP

Figure S40. Single point energies of molecule T3 in the S_0 and S_1 states calculated by B3LYP and CAM-B3LYP

Figure S41. Single point energies of molecule P3 in the S_0 and S_1 states calculated by B3LYP and CAM-B3LYP

Mologulo	N-H Stretc	Shift (am-1)	
wioiecule —	S_0	S_1	
T1	3488	3464	-23
P1	3477	3456	-21
F1	3473	3455	-18
Τ2	3473	3486	13
P2	3473	3488	15
F2	3471	3486	15
Т3	3485	3489	4
P3	3475	3482	7
F3	3469	3477	8

TABLE S1. Vibrational –NH stretching frequency of all molecules at state S₀ and S₁

TABLE S2. Computed optical parameters of molecules, keto absorbance and emission, enol emission, oscillator strengths, composition and CI(%) calculated at DFT/B3LYP and TD-DFT/CAM-B3LYP for ground and excited state

Molecule	Туре	Transition	Energy (nm)	Oscillator strength	Composition	CI (%)
T2	k abs	$S_0 \rightarrow S_1$	362	0.9357	H(82)→L(83)	93.37
	k emission	$S_1 \rightarrow S_0$	402	1.0520	H(82)→L(83)	96.76
	e emission	$S_1 \rightarrow S_0$	428	0 9304	H(82)→L(83)	96.34
	c chilission	51,200	120	0.7504	$\text{H-1(81)} \rightarrow \text{L+1(84)}$	2.33
P2	k abs	$S_0 \rightarrow S_1$	367	0.9721	H(81)→L(82)	93.61
	k emission	$S_1 \rightarrow S_0$	407	1.0776	H(81)→L(82)	96.74
	e emission	$S_1 \rightarrow S_0$	426	1.1281	H(81)→L(82)	96.51
F2	k abs	$S_0 \rightarrow S_1$	352	0.9325	H(78)→L(79)	94.00
	k emission	$S_1 \rightarrow S_0$	392	1.044	H(78)→L(79)	97.02
	e emission	$S_1 \rightarrow S_0$	421	1 145	H(78)→L(79)	96.62
		51 50		1.1.10	$H-1(77) \rightarrow L+1(80)$	2.15
T3	k abs	$S_0 \rightarrow S_1$	363	1.3251	H(100)→L(101)	93.36
	k emission	$S_1 \rightarrow S_0$	402	1.4021	H(100)→L(101)	96.2
	e emission	$S_1 \rightarrow S_0$	430	1 5366	H(100)→L(101)	94.65
	• •	51 50	120	1.0000	$\text{H-1(99)} \rightarrow \text{L+1(102)}$	3.05
P3	k abs	$S_0 \rightarrow S_1$	350	1.3135	H(98)→L(99)	95.05
	k emission	$S_1 \rightarrow S_0$	389	1.3953	H(98)→L(99)	96.81
	e emission	$S_1 \rightarrow S_0$	410	1.5919	H(98)→L(99)	96.52

F3	k abs	$S_0 \rightarrow S_1$	358	1.3541	H(92→L(93)	93.73
	k emission	$S_1 \rightarrow S_0$	397	1.4234	H(92→L(93)	96.38
	e emission	S.→S.	420	1 6346	H(92→L(93)	96.23
	c chilission	51 ,20	720	1.0540	H-1(91)→L+1(94)	2.14