Supporting Information

Facile Synthesis of Uniform Yolk-shell Structured FeS@mesoporous Carbon Spheres for High-performance Sodium-ion Batteries

Xiaoning Chen, Dandong Wang and Jiangping Chen*

School of Mechanical Engineering, Shanghai Jiao Tong University, China. E-mail: jpchen_sjtu@163.com Phone: +86 021-34206775

Figure S1. TEM image of the Fe₃O₄ particles.

Figure S2. TEM image of the yolk-shell structured Fe₃O₄@meso-C composites.

Figure S3. TGA curve of the yolk-shell structured FeS@meso-C composites. The residuum of the yolk-shell structured FeS@meso-C composites is Fe₂O₃ $(FeS+7/4O_2=1/2Fe_2O_3+SO_2)$, the content of FeS in the electrode materials is calculated by the weight change of the TGA curve and the loss of FeS transform to Fe₂O₃. The total weight of the yolk-shell structured FeS@meso-C composites is 100 %, the content of FeS is *X*, the transformational weight loss between FeS and Fe₂O₃ is (88-80)*X*/88. Therefore, 39 % = (100 %-*X*) + (88-80)*X*/88, the number of *X* is 85.8 %. The content of Fe₂O₃ is directly calculated based on the weight change in the above TGA curve

Figure S4. XRD pattern of the pure FeS.

Figure S5. Nyquist plots of the yolk-shell structured FeS@meso-C composites and the pure FeS electrode.

Figure S6. TEM images of the yolk-shell structured FeS@meso-C electrodes after 30 cycles.

Table S1. The comparison of electrochemical performances of different iron sulfide

 based anodes materials for SIBs.

Anode	Current density (mA g ⁻¹)	Discharge capacity (mA h g ⁻¹)	Cycle number	Reference
Fe ₃ O ₄ @FeS	200	169	750	1
P-FeS@C	200	555.1	150	2
FeS@TiO ₂ @C	200	444	150	3
FeS/C	100	575.7	100	4
FeS/NC	200	599.9	100	5
FeS@C/carbon cloth	100	430	50	6
FeS ₂ /CNT	200	394	400	7
FeS@meso-C	200	596	100	This work

References

- 1 B. H. Hou, Y. Y. Wang, J. Z. Guo, Y. Zhang, Q. L. Ning, Y. Yang, W. H. Li, J. P.
- Zhang, X. L. Wang and X. L. Wu, ACS Appl. Mater. Interfaces, 2018, 10, 3581.
- 2 B. H. Hou, Y. Y. Wang, J. Z. Guo, Q. L. Ning, X. T. Xi, W. L. Pang, A. M. Cao, X.
- L. Wang, J. P. Zhang and X. L. Wu, *Nanoscale*, 2018, 10, 9218.
- 3 X. J. Xu, Z. B. Liu, S. M. Ji, Z. S. Wang, Z. Y. Ni, Y. Q. Lv, J. W. Liu and J. Liu, *Chem. Eng. J.*, 2019, **359**, 765.
- 4 Q. H. Wang, W. C. Zhang, C. Guo, Y. J. Liu, C. Wang and Z. P. Guo, *Adv. Funct. Mater.*, 2017, **27**, 1703390.
- 5 Y. Z. Liu, W. T. Zhong, C. H. Yang, Q. C. Pan, Y. P. Li, G. Wang, F. H. Zheng, X.
- H. Xiong, M. L. Liu and Q. Y. Zhang, J. Mater. Chem. A, 2018, 6, 24702.
- 6 X. Wei, W. Li, J. A. Shi, L. Gu, Y. Yu, ACS Appl. Mater. Interfaces, 2015, 7, 27804.
- 7 Y. Chen, X. Hu, B. Evanko, X. Sun, X. Li, T. Hou, S. Cai, C. Zheng, W. Hu, G. D. Stucky, *Nano Energy*, 2018, **46**, 117.