Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

Supporting Informations

Design, simple and efficient synthesis of bio active novel pyrazolyl-isoxazoline hybrids

Balakrishnan Sankar, Muniyasamy Harikrishnan, Renganathan Raja, Velu Sadhasivam, Nelson Malini, Sepperumal Murugesan, Ayyanar Siva*

Supramolecular and Organometallic Chemistry Lab, Department of Inorganic Chemistry,

School of Chemistry, Madurai Kamaraj University Madurai-21.

Corresponding author Email (drasiva@gmail.com and siva.chem@mkuniversity.org)

Supporting Information

S.No.	Contents	Page No.
1	Figure S1. ¹ H NMR spectrum of 6a	4
2	Figure S2. ¹³ C NMR spectrum of 6a	4
3	Figure S3. ESI-MS spectrum of 6a	5
4	Figure S4. ¹ H NMR spectrum of 6b	5
5	Figure S5. ¹³ C NMR spectrum of 6b	6
6	Figure S6. ESI-MS spectrum of 6b	6
7	Figure S7. ¹ H NMR spectrum of 6c	7
8	Figure S8. ¹³ C NMR spectrum of 6c	7
9	Figure S9. ESI-MS spectrum of 6c	8
10	Figure S10. ¹ H NMR spectrum of 6d	8
11	Figure S11. ¹³ C NMR spectrum of 6d	9
12	Figure S12. ESI-MS spectrum of 6d	9
13	Figure S13. ¹ H NMR spectrum of 6e	10
14	Figure S14. ¹³ C NMR spectrum of 6e	10

15	Figure S15. ESI-MS spectrum of 6e	11
16	Figure S16. ¹ H NMR spectrum of 6f	11
17	Figure S17. ¹³ C NMR spectrum of 6f	12
18	Figure S18. ESI-MS spectrum of 6f	12
19	Figure S19. ¹ H NMR spectrum of 6g	13
20	Figure S20. ¹³ C NMR spectrum of 6g	13
21	Figure S21. ESI-MS spectrum of 6g	14
22	Figure S22. ¹ H NMR spectrum of 6h	14
23	Figure S23. ¹³ C NMR spectrum of 6h	15
24	Figure S24. ESI-MS spectrum of 6h	15
25	Figure S25. ¹ H NMR spectrum of 6i	16
26	Figure S26. ¹³ C NMR spectrum of 6i	16
27	Figure S27. ESI-MS spectrum of 6i	17
28	Figure S28. ¹ H NMR spectrum of 6j	17
29	Figure S29. ¹³ C NMR spectrum of 6j	18
30	Figure S30. ESI-MS spectrum of 6j	18
31	Figure S31. ¹ H NMR spectrum of 6k	19
32	Figure S32. ¹³ C NMR spectrum of 6k	19
33	Figure S33. ESI-MS spectrum of 6k	20
34	Figure S34. ¹ H NMR spectrum of 6l	20
35	Figure S35. ¹³ C NMR spectrum of 6l	21
36	Figure S36. ESI-MS spectrum of 6l	21
37	Figure S37. ¹ H NMR spectrum of 6m	22
38	Figure S38. ¹³ C NMR spectrum of 6m	22
39	Figure S39. ESI-MS spectrum of 6m	23
40	Figure S40. ¹ H NMR spectrum of 6n	23
41	Figure S41. ¹³ C NMR spectrum of 6n	24
42	Figure S42. ESI-MS spectrum of 6n	24
43	Figure S43. ¹ H NMR spectrum of 60	25
44	Figure S44. ¹³ C NMR spectrum of 60	25

45	Figure S45. ESI-MS spectrum of 60	26
46	Figure S46. ¹ H NMR spectrum of 6p	26
47	Figure S47. ¹³ C NMR spectrum of 6p	27
48	Figure S48. ESI-MS spectrum of 6p	27
49	Figure S49. ¹ H NMR spectrum of 6q	28
50	Figure S50. ¹³ C NMR spectrum of 6q	28
51	Figure S51. ESI-MS spectrum of 6q	29
52	Figure S52. ¹ H NMR spectrum of 6r	29
53	Figure S53. ¹³ C NMR spectrum of 6r	30
54	Figure S54. ESI-MS spectrum of 6r	30
55	Figure S55. ¹ H NMR spectrum of 6s	31
56	Figure S56. ¹³ C NMR spectrum of 6s	31
57	Figure S57. ESI-MS spectrum of 6s	32

yloxy)methyl)-3-(1,3-dimethyl-5-phenoxy-1H-pyrazol-4-yl)-4,5-dihydroisoxazole (6j)

X-ray crystallographic information

ORTEP diagram of isoxazoline derivative 6n

Empirical formula	$\underline{C}_{22}\underline{H}_{23}\underline{N}_{3}\underline{O}_{4}$
Crystal shape and color	Colorless plates
Formula weight	<u>393.43</u>
Temperature	293K
Wavelength	0.7107 Å
Crystal system & space group	Monolclinic, $P2_1/c$
	a = <u>15.715 (2)</u> ÅÅ
	b = <u>15.803 (2)</u> Å
Cell dimensions	c = 8.4108 (10) Å
	$\alpha, \gamma, \beta = 100.922 \ (6)^{\circ}$
Volume	<u>2050.9 (4)</u> Å ³
Z, calculated density	4, 1.274Mg m^{-3}
F(000)	<u>832</u>
θ range for data collection	<u>1.3</u> °– <u>27.5</u> °
Absorption coefficient	0.089 mm^{-1}
$\Delta \rho_{max}$ and $\Delta \rho_{min}$	<u>0.17</u> e Å ⁻³ and <u>-0.19</u> e Å ⁻³
Refinement method	Full matrix least square on F^2
Data/ parameters	4716/262
Goodness-of-fit on F^2	1.03
Final R indices $[I \ge 2\sigma(I)]$	R1 = 0.047, wR2 = 0.153
CCDC NO	1897410

Crystallographic Data for **6n** single crystal

01-C3	1.3622 (18)	C14—C13	1.519 (2)
01—C6	1.3910 (19)	C14—H14A	0.97
02—N3	1.4138 (18)	C14—H14B	0.97
O2-C13	1.459 (2)	C13—C15	1.494 (3)
O3-C16	1.376 (2)	C13—H13	0.98
O3—C15	1.421 (2)	C15—H15A	0.97
N1-C3	1.335 (2)	C15—H15B	0.97
N1—N2	1.3629 (18)	C16—C17	1.368 (3)
N1-C5	1.451 (2)	C16—C21	1.369 (3)
N2-C1	1.328 (2)	C21—C20	1.371 (3)
N3-C12	1.2762 (19)	C21—H21	0.93
C22—O4	1.416 (3)	C20—C19	1.376 (3)
C22—H22A	0.96	C20—H20	0.93
C22—H22B	0.96	C19—C18	1.366 (3)
C22—H22C	0.96	C19—O4	1.375 (2)
C1—C2	1.410 (2)	C18—C17	1.381 (3)
C1—C4	1.490 (2)	C18—H18	0.93
C2—C3	1.377 (2)	C17—H17	0.93
C2—C12	1.449 (2)	C5—H5A	0.96
C6—C7	1.370 (2)	C5—H5B	0.96
C6-C11	1.376 (2)	C5—H5C	0.96
С7—С8	1.382 (3)	C5—H5D	0.96
C7—H7	0.93	C5—H5E	0.96
C8—C9	1.379 (3)	C5—H5F	0.96
C8—H8	0.93	C4—H4A	0.96
C9—C10	1.367 (3)	C4—H4B	0.96
С9—Н9	0.93	C4—H4C	0.96
C10-C11	1.377 (3)	C4—H4D	0.96
C10—H10	0.93	C4—H4E	0.96
C12—C14	1.495 (2)	C4—H4F	0.96

Table.2. Bond lengths of the title molecule

C3-01-C6	118.12 (11)	C17—C16—C21	118.74 (19)
N3-02-C13	109.72 (11)	C17—C16—O3	125.14 (17)
C16-03-C15	117.72 (13)	C21-C16-O3	116.10 (17)
C3-N1-N2	110.91 (12)	C16-C21-C20	120.6 (2)
C3-N1-C5	128.05 (15)	C16-C21-H21	119.7
N2-N1-C5	121.04 (14)	C20-C21-H21	119.7
C1-N2-N1	105.31 (13)	C21-C20-C19	120.88 (19)
C12-N3-O2	109.28 (12)	C21-C20-H20	119.6
O4-C22-H22A	109.5	C19—C20—H20	119.6
O4—C22—H22B	109.5	C18—C19—O4	125.2 (2)
H22A—C22—H22B	109.5	C18-C19-C20	118.6 (2)
O4-C22-H22C	109.5	O4-C19-C20	116.15 (19)
H22A—C22—H22C	109.5	C19—C18—C17	120.4 (2)
H22B-C22-H22C	109.5	C19—C18—H18	119.8
N2-C1-C2	111.45 (14)	C17—C18—H18	119.8
N2-C1-C4	119.88 (14)	C16—C17—C18	120.82 (19)
C2-C1-C4	128.67 (14)	C16-C17-H17	119.6
C3-C2-C1	103.61 (13)	C18—C17—H17	119.6
C3-C2-C12	125.86 (14)	C19—O4—C22	117.64 (18)
C1-C2-C12	130.52 (14)	N1-C5-H5A	109.5
N1-C3-01	120.28 (13)	N1-C5-H5B	109.5
N1-C3-C2	108.73 (13)	H5A—C5—H5B	109.5
01—C3—C2	130.89 (14)	N1-C5-H5C	109.5
C7—C6—C11	121.52 (16)	H5A—C5—H5C	109.5
C7—C6—O1	123.35 (14)	H5B—C5—H5C	109.5
C11-C6-O1	115.13 (14)	N1-C5-H5D	109.5
C6-C7-C8	118.60 (17)	H5A—C5—H5D	141.1
C6—C7—H7	120.7	H5B—C5—H5D	56.3
С8—С7—Н7	120.7	H5C—C5—H5D	56.3
C9—C8—C7	120.6 (2)	N1-C5-H5E	109.5
С9—С8—Н8	119.7	H5A—C5—H5E	56.3
С7—С8—Н8	119.7	H5B—C5—H5E	141.1
C10-C9-C8	119.6 (2)	H5C—C5—H5E	56.3
С10—С9—Н9	120.2	H5D—C5—H5E	109.5
С8—С9—Н9	120.2	N1-C5-H5F	109.5
C9-C10-C11	120.66 (18)	H5A—C5—H5F	56.3
C9-C10-H10	119.7	H5B—C5—H5F	56.3
C11-C10-H10	119.7	H5C—C5—H5F	141.1
C6-C11-C10	118.93 (18)	H5D—C5—H5F	109.5
C6-C11-H11	120.5	H5E—C5—H5F	109.5

Table.3. Bond Angles of the title compound

	1	
120.5	C1—C4—H4A	109.5
121.50 (14)	C1—C4—H4B	109.5
114.36 (14)	Н4А—С4—Н4В	109.5
124.14 (13)	C1—C4—H4C	109.5
101.54 (13)	H4A—C4—H4C	109.5
111.5	H4B—C4—H4C	109.5
111.5	C1—C4—H4D	109.5
111.5	H4A—C4—H4D	141.1
111.5	H4B—C4—H4D	56.3
109.3	H4C—C4—H4D	56.3
108.69 (14)	C1—C4—H4E	109.5
104.80 (13)	H4A—C4—H4E	56.3
116.14 (16)	H4B—C4—H4E	141.1
109	H4C—C4—H4E	56.3
109	H4D—C4—H4E	109.5
109	C1—C4—H4F	109.5
108.44 (14)	H4A—C4—H4F	56.3
110	H4B—C4—H4F	56.3
110	H4C—C4—H4F	141.1
110	H4D—C4—H4F	109.5
110	H4E—C4—H4F	109.5
	120.5 121.50 (14) 114.36 (14) 124.14 (13) 101.54 (13) 111.5 111.5 111.5 111.5 111.5 109.3 108.69 (14) 108.69 (14) 109 109 109 109 109 109 109 109	120.5C1—C4—H4A121.50 (14)C1—C4—H4B114.36 (14)H4A—C4—H4B124.14 (13)C1—C4—H4C101.54 (13)H4A—C4—H4C111.5H4B—C4—H4C111.5C1—C4—H4D111.5H4B—C4—H4D111.5H4B—C4—H4D109.3H4C—C4—H4E104.80 (13)H4A—C4—H4E109H4C—C4—H4E109H4C—C4—H4E109H4C—C4—H4E109H4D—C4—H4E109H4C—C4—H4E109H4D—C4—H4E109H4D—C4—H4F109H4A—C4—H4F109H4A—C4—H4F109H4A—C4—H4F110H4B—C4—H4F110H4C—C4—H4F110H4D—C4—H4F110H4D—C4—H4F110H4D—C4—H4F110H4D—C4—H4F110H4D—C4—H4F110H4D—C4—H4F110H4D—C4—H4F

C3-N1-N2-C1	-0.04 (17)	02—N3—C12—C2	179.59 (14)
C5-N1-N2-C1	179.47 (15)	O2-N3-C12-C14	0.62 (19)
C13-02-N3-C12	3.02 (18)	C3-C2-C12-N3	179.79 (15)
N1-N2-C1-C2	-0.16 (18)	C1-C2-C12-N3	-1.8 (3)
N1-N2-C1-C4	-179.59 (14)	C3-C2-C12-C14	-1.3 (3)
N2-C1-C2-C3	0.29 (18)	C1-C2-C12-C14	177.10 (16)
C4-C1-C2-C3	179.66 (16)	N3-C12-C14-C13	-3.7 (2)
N2-C1-C2-C12	-178.41 (15)	C2-C12-C14-C13	177.34 (15)
C4-C1-C2-C12	1.0 (3)	N3-02-C13-C15	119.60 (14)
N2-N1-C3-01	176.84 (13)	N3-02-C13-C14	-5.17 (18)
C5-N1-C3-O1	-2.6 (2)	C12-C14-C13-O2	5.06 (18)
N2—N1—C3—C2	0.23 (17)	C12—C14—C13—C15	-114.87 (16)
C5-N1-C3-C2	-179.24 (15)	C16-03-C15-C13	174.63 (15)
C6-01-C3-N1	90.33 (17)	02—C13—C15—O3	-72.19 (18)
C6-01-C3-C2	-93.91 (19)	C14-C13-C15-O3	45.6 (2)
C1-C2-C3-N1	-0.31 (17)	C15-03-C16-C17	-22.5 (3)
C12-C2-C3-N1	178.48 (14)	C15-03-C16-C21	159.36 (18)
C1-C2-C3-01	-176.44 (15)	C17-C16-C21-C20	-0.1 (3)
C12-C2-C3-O1	2.3 (3)	O3-C16-C21-C20	178.15 (19)
C3-01-C6-C7	6.1 (2)	C16-C21-C20-C19	-0.5 (3)
C3-01-C6-C11	-174.30 (14)	C21-C20-C19-C18	0.1 (3)
C11—C6—C7—C8	0.6 (3)	C21-C20-C19-O4	179.71 (19)
01-C6-C7-C8	-179.77 (17)	O4—C19—C18—C17	-178.6 (2)
C6—C7—C8—C9	-0.6 (3)	C20—C19—C18—C17	0.9 (3)
C7—C8—C9—C10	0.3 (4)	C21—C16—C17—C18	1.2 (3)
C8-C9-C10-C11	0.0 (3)	O3-C16-C17-C18	-176.9 (2)
C7—C6—C11—C10	-0.3 (3)	C19—C18—C17—C16	-1.6 (4)
01-C6-C11-C10	-179.95 (15)	C18-C19-O4-C22	-4.1 (3)
C9-C10-C11-C6	0.0 (3)	C20-C19-O4-C22	176.29 (19)

Table.4. Torsion angles of the compound

Table.5. Hydrogen bonding geometry of the molecule.

D—HA	(D — H)	(H ••• A)	(D ····A)	(D — H A)
(Å,°)	(Å)	(Å)	(Å)	(°)
C11—H11N3	0.93	2.46	3.306	151
С7—Н7О4	0.93	2.62	3.398	140