Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

# Enantioselective vinylogous Michael addition of y-butenolide to 2-iminochromenes

# Vijay Gupta and Ravi P Singh\*<sup>[a]</sup>

Department of chemistry, Indian Institute of Technology, Delhi, Hauz Khas, New

Delhi, 110016, India.

ravips@chemistry.iitd.ac .in

# **Supporting Information**

# **Table of Contents**

| 1. General Information                                                    | S2  |
|---------------------------------------------------------------------------|-----|
| 2. Preparation of Catalyst                                                | S2  |
| 3. Preparation of 2-Iminochromenes                                        |     |
| 4. Preparation of Racemic Michael adducts                                 |     |
| 5. General Procedure for Asymmetric Vinylogous Michael Addition Reactions | S4  |
| 6. Analytical Data for the Products                                       | S4  |
| 7. X-Ray Crystallographic Data for Compound <b>3i</b>                     | S12 |
| 8. References                                                             | S13 |
| 9. <sup>1</sup> H and <sup>13</sup> C NMR Copies                          | S14 |
| 10. HPLC Spectra of Compounds                                             | S29 |

### **1. General Informations:**

Bruker AV-300 (300 MHz and 75 MHz) and AV-400 (400 MHz and 100 MHz) instruments were used to record <sup>1</sup>H and <sup>13</sup>C spectra in deuterated solvents with residual solvent signals as internal references. <sup>1</sup>H NMR data were reported as follow: chemical shifts ( $\delta$ , ppm), multiplicity (s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet), integration, coupling constant (Hz). <sup>13</sup>C NMR data is recorded in terms of chemical shifts ( $\delta$ , ppm). Mass spectra recorded on a high-resolution mass spectrometer (ESI-TOF) in positive-ion mode. Specific rotations were recorded on an Autopol III Automatic Polarimeter. Column chromatography separations were performed on silica gel (100-200 mesh). High Performance Liquid Chromatography was performed on an Agilent 1200 series chromatographs using chiral column (ID, IC, IE, Lux 5u cellulose-4) (250 x 4.6 mm) as noted. UV absorption was monitored at 254 nm. All solvents and inorganic reagents were from commercial sources and used without further purification unless otherwise noted.

**2. Preparation of the Catalysts:** Catalysts I was purchased from Sigma Aldrich and used without further purification. Catalyst II-VIII was prepared according to known literature procedures.<sup>1</sup>



**3. Preparation of 2-iminochromenes:**  $\alpha$ -Angelica lactone was purchased from Alfa Aesar and used without further purification. All salicylaldehyde derivatives were purchased from commercial sources and used without further purification. The electrophile iminochromenes (**1a-I**) were prepared according to the literature procedure.<sup>2</sup>



**4. Preparation of Racemic Michael adducts:** To the suspension of iminochromene **1** (0.1 mmol) in anhydrous dichloromethane (1 ml),  $\beta$ , $\gamma$ -butenolide **2** (0.15 mmol) and then triethylamine (20 mol%) were added. The resulting reaction mixture was stirred at room temperature for 16 h. After that, the crude reaction mixture was purified by column chromatography on silica gel using ethylacetate/DCM (3:7) as eluent yielded desire product. The purified product was subjected for HPLC analysis.

### 5. General Procedure for Asymmetric Vinylogous Michael Addition Reactions:



To the suspension of iminochromene 1 (0.1 mmol) in anhydrous dichloromethane (1 ml), catalyst III (10 mol%) and then  $\alpha$ -Angelica lactone 2 (0.15 mmol) were added under the N<sub>2</sub> gas atmosphere. The resulting reaction mixture was stirred at room temperature for 16 h. After that, the crude reaction mixture was purified by column chromatography on silica gel using ethylacetate/DCM (3:7) as eluent afforded the desire product 3. The purified product was subjected for HPLC analysis.

# 6. Analytical Data for Products:



# (S)-2-amino-4-((S)-2-methyl-5-oxo-2,5-dihydrofuran-2-yl)-4H-

**chromene-3-carbonitrile (3a):** To the suspension of iminochromene **1a** (0.1 mmol) in anhydrous dichloromethane (1 ml), catalyst **III** (10 mol%) and then  $\alpha$ -Angelica lactone **2** (0.15 mmol) were added under the N<sub>2</sub> gas atmosphere. The resulting reaction mixture was stirred at room temperature for 16 h. The *syn/anti* (1.6:1) was determined by <sup>1</sup>H NMMR analysis of crude product ( $\delta$  major: 3.68 ppm,  $\delta$  minor: 3.84

ppm). The crude reaction mixture was purified by column chromatography on silica gel using ethylacetate/DCM (3:7) as eluent afforded the desire product **3a** as white solid (16 mg, 60% yield,  $R_f = 0.4$ , *syn/anti* = 1.6:1). The enantiomeric ratio of the *syn* diastereomer was determined to be 84:16 by HPLC, ID column,  $\lambda = 254$  nm, hexanes: isopropanol = 8:2, 1.0 mL/min, t (major) = 19.9 min, t (minor) = 21.9 min, t (minor) = 24.4 min.  $[\alpha]_{25}^D = -7.04$  (c = 0.12, CHCl<sub>3</sub>); <sup>1</sup>**H-NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.63 (d, J = 5.7 Hz, 1H), 7.31 (dd, J = 9.3, 5.8 Hz, 2H), 7.22 – 7.13 (m, 1H), 7.04 (d, J = 8.2 Hz, 1H), 6.09 (d, J = 5.7 Hz, 1H), 4.95 (s, 2H), 3.68 (s, 1H), 1.33 (s, 3H). <sup>13</sup>C-NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  171.62, 163.00, 158.59, 150.40, 130.47, 129.25, 125.08, 121.86, 120.29, 118.82, 116.33, 92.11, 53.99, 44.77, 19.39. **FTIR** (**KBr**) cm<sup>-1</sup>: 3392, 3316, 2928, 2188, 1741, 1643, 1608, 1412, 1267, 1224, 1110, 1049, 822, 762. HRMS-ESI [M+Na]<sup>+</sup>, calcd for C<sub>15</sub>H<sub>12</sub>N<sub>2</sub>NaO<sub>3</sub> 291.0740, found 291.0740. **HRMS-ESI:** [M+Na]<sup>+</sup>, calcd for C<sub>15</sub>H<sub>12</sub>N<sub>2</sub>NaO<sub>3</sub> 291.0740, found 291.0746.



yl)-4*H*-chromene-3-carbonitrile (3b): To the suspension of iminochromene 1b (0.1 mmol) in anhydrous dichloromethane (1 ml), catalyst III (10 mol%) and then  $\alpha$ -Angelica lactone (0.15 mmol) were added under the N<sub>2</sub> gas atmosphere. The resulting reaction mixture was stirred at room temperature for 24 h. The *syn /anti* ratio (4:1) was determined by <sup>1</sup>H NMR analysis of the crude product ( $\delta$  major: 3.62

(S)-2-amino-6-chloro-4-((S)-2-methyl-5-oxo-2,5-dihydrofuran-2-

ppm,  $\delta$  minor: 3.78 ppm). The crude reaction mixture was purified by column chromatography on silica gel using ethylacetate/DCM (3:7) as eluent afforded the desire product **3b** as white solid (21 mg, 70% yield,  $R_f = 0.4$ , *syn/anti* = 4:1). The enantiomeric ratio of the *syn* diastereomer was determined to be 93:7 by HPLC, [ID column,  $\lambda = 254$  nm, hexanes:isopropanol = 8:2, 1.0 mL/min, t (major) = 14.2 min, t (minor) = 14.9 min, t (minor) = 16.3 min, t (minor) =20.7 min].  $[\alpha]_{25}^D = -11.05$  (c = 0.19, CHCl<sub>3</sub>); <sup>1</sup>**H-NMR** (400 MHz, DMSO- $d_6$ )  $\delta$  7.73 (d, J = 5.2 Hz, 1H), 7.36 (d, J = 8.6 Hz, 1H), 7.30 –7.27 (m, 3H), 7.08 (d, J = 8.6 Hz, 1H), 6.09 (d, J = 5.3 Hz, 1H), 3.93 (s, 1H), 1.42 (s, 3H). <sup>13</sup>**C-NMR** (100 MHz, DMSO- $d_6$ )  $\delta$  171.34, 163.51, 159.66, 149.42, 129.39, 128.61, 127.43, 122.07, 120.95, 120.70, 117.75, 91.82, 49.28, 42.74, 20.51. **FTIR (KBr) cm<sup>-1</sup>:** 3391, 3318, 3192, 2926, 2186, 1751, 1647, 1605, 1418, 1185, 1108. **HRMS-ESI:** [M+Na]<sup>+</sup>, calcd for C<sub>15</sub>H<sub>11</sub>ClN<sub>2</sub>NaO<sub>3</sub> 325.0350, found 325.0353.



**2-yl)-4***H***-chromene-3-carbonitrile (3c):** To the suspension of iminochromene **1c** (0.1 mmol) in anhydrous dichloromethane (1 ml), catalyst **III** (10 mol%) and then  $\alpha$ -Angelica lactone (0.15 mmol) were added under the N<sub>2</sub> gas atmosphere. The resulting reaction mixture was stirred at room temperature for 16 h. The *syn/anti* ratio (4.9:1) was determined by <sup>1</sup>H NMR analysis of the crude

(S)-2-amino-6-bromo-4-((S)-2-methyl-5-oxo-2,5-dihydrofuran-

product ( $\delta$  major: 3.64 ppm,  $\delta$  minor: 3.78 ppm). The crude reaction mixture was purified by column chromatography on silica gel using ethylacetate/DCM (3:7) as eluent afforded the desire product **3c** as light yellow solid (25 mg, 73% yield,  $R_f = 0.4$ , *syn/anti* = 4.9:1). The enantiomeric ratio of the *syn* diastereomer was determined to be 90:10 by HPLC, [ID column,

 $\lambda = 254$  nm, hexanes:isopropanol = 8:2, 1.0 mL/min, t (minor) = 27.7 min, t (major) = 40.2 min, t (minor) = 41.2, t (minor) = 53.3 min].  $[\alpha]_{25}^{D} = -5.62$  (c = 0.16, CHCl<sub>3</sub>); <sup>1</sup>H-NMR (400 MHz, DMSO- $d_6$ )  $\delta$  7.72 (d, J = 5.7 Hz, 1H), 7.47 (d, J = 8.7 Hz, 1H), 7.42 (d, J = 2.2 Hz, 1H), 7.32 (s, 2H), 7.01 (d, J = 8.7 Hz, 1H), 6.08 (d, J = 5.7 Hz, 1H), 3.92 (s, 1H), 1.41 (s, 3H). <sup>13</sup>C-NMR (75 MHz, DMSO- $d_6$ )  $\delta$  171.4, 163.5, 159.7, 149.9, 132.3, 131.5, 122.5, 121.0 120.7, 118.2, 115.4, 91.9, 49.3, 42.6, 20.6. FTIR (KBr) cm<sup>-1</sup>: 3402, 3325, 3102, 2925, 2852, 2187, 1751, 1642, 1602, 1415, 1265, 1186, 1110. HRMS-ESI: [M+Na]<sup>+</sup>, calcd for C<sub>15</sub>H<sub>11</sub>BrN<sub>2</sub>NaO<sub>3</sub> 368.9845, found 368.9869.



(S)-2-amino-6,8-dichloro-4-((S)-2-methyl-5-oxo-2,5-dihydrofuran-2-yl)-4*H*-chromene-3-carbonitrile (3d): To the suspension of iminochromene 1d (0.1 mmol) in anhydrous dichloromethane (1 ml), catalyst III (10 mol%) and then  $\alpha$ -Angelica lactone 2 (0.15 mmol) were added under the N<sub>2</sub> gas atmosphere. The resulting reaction mixture was stirred at room temperature for 24 h. The *syn/anti* ratio (8.6:1) was determined by <sup>1</sup>H NMR analysis of the crude product ( $\delta$ 

major: 3.63 ppm,  $\delta$  minor: 3.81 ppm). The crude reaction mixture was purified by column chromatography on silica gel using ethylacetate/DCM (3:7) as eluent afforded the desire product **3d** as white solid (22 mg, 64% yield,  $R_f = 0.5$ , *syn/anti* = 8.6:1). The enantiomeric ratio of the *syn* diastereomer was determined to be 87:13 by HPLC, [Lux cellulose-4 column,  $\lambda = 254$  nm, hexanes:isopropanol = 8:2, 1.0 mL/min, t (minor) = 20.0 min, t (minor) = 28.7 min, t (minor) = 34.3 min, t (major) = 40.3 min].  $[\alpha]_{25}^D = +40.0$  (*c* = 0.01, CHCl<sub>3</sub>); **<sup>1</sup>H-NMR** (400 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  7.72 (d, *J* = 5.5 Hz, 1H), 7.63 (s, 1H), 7.45 (s, 2H), 7.28 (s, 1H), 6.07 (d, *J* = 5.6 Hz, 1H), 3.99 (s, 1H), 1.42 (s, 3H). <sup>13</sup>C-NMR (100 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  171.43, 163.20, 159.66, 145.57, 128.75, 128.45, 127.64, 123.69, 121.40, 120.88, 120.61, 91.83, 49.66, 43.01, 20.66. FTIR (KBr) cm<sup>-1</sup>: 3422, 3348, 3199, 2927, 2855, 2187, 1745, 1645, 1608, 1418, 1245, 1115. HRMS-ESI: [M+Na]+, calcd for C<sub>15</sub>H<sub>10</sub>Cl<sub>2</sub>N<sub>2</sub>NaO<sub>3</sub> 358.9960, found 358.9966.

### (S)-2-amino-6,8-dibromo-4-((S)-2-methyl-5-oxo-2,5-



dihydrofuran-2-yl)-4*H*-chromene-3-carbonitrile (3e): To the suspension of iminochromene 1e (0.1 mmol) in anhydrous dichloromethane (1 ml), catalyst III (10 mol%) and then  $\alpha$ -Angelica lactone 2 (0.15 mmol) were added under the N<sub>2</sub> gas

atmosphere. The resulting reaction mixture was stirred at room temperature for 20 h. The *syn/anti* ratio (4:1) was determined by <sup>1</sup>H NMR analysis of the crude product ( $\delta$  major: 3.56 ppm,  $\delta$  minor: 3.73 ppm). The crude reaction mixture was purified by column chromatography on silica gel using ethylacetate/DCM (3:7) as eluent afforded the desire product **3e** as solid (21 mg, 52% yield,  $R_f = 0.5$ , *syn/anti* = 4:1). The enantiomeric ratio of the *syn* diastereomer was determined to be 90:10 by HPLC, [Lux cellulose-4 column,  $\lambda = 254$  nm, hexanes:isopropanol = 8:2, 1.0 mL/min, t (minor) = 23.0 min, t (minor) = 34.9 min, t (minor) = 39.5 min, t (major) = 45.2 min].  $[\alpha]_{25}^D = +3.33$  (c = 0.15, CHCl<sub>3</sub>); <sup>1</sup>H-NMR (300 MHz, DMSO- $d_6$ )  $\delta$  7.83 (d, J = 3 Hz, 1H), 7.72 (d, J = 5.7 Hz, 1H), 7.50-7.39 (m, 3H), 6.08 (d, J = 5.7 Hz, 1H), 3.99 (s, 1H), 1.41 (s, 3H). <sup>13</sup>C-NMR (100 MHz, DMSO- $d_6$ )  $\delta$  171.31, 163.17, 159.53, 147.00, 134.05, 131.83, 123.90, 120.81, 120.49, 115.58, 110.52, 91.76, 49.68, 42.99, 20.58. FTIR (KBr) cm<sup>-1</sup>: 3448, 3342, 3205, 2925, 2854, 2186, 1743, 1648, 1522, 1414, 1252, 1178. HRMS-ESI: [M+Na]<sup>+</sup>, calcd for C<sub>15</sub>H<sub>10</sub>Br<sub>2</sub>N<sub>2</sub>NaO<sub>3</sub> 446.8950, found 446.8946.

# (S)-2-amino-7-fluoro-4-((S)-2-methyl-5-oxo-2,5-dihydrofuran-2-yl)-



**4H-chromene-3-carbonitrile (3f):** To the suspension of iminochromene **1f** (0.1 mmol) in anhydrous dichloromethane (1 ml), catalyst **III** (10 mol%) and then  $\alpha$ -Angelica lactone **2** (0.15 mmol) were added under the N<sub>2</sub> gas atmosphere. The resulting reaction mixture was stirred at room temperature for 16 h. The *syn/anti* ratio (2.1:1) was determined by <sup>1</sup>H NMR analysis of the crude product ( $\delta$ 

major: 3.67 ppm,  $\delta$  minor: 3.76 ppm). The crude reaction mixture was purified by column chromatography on silica gel using ethylacetate/DCM (3:7) as eluent afforded the desire product **3f** light yellow solid (17 mg, 58% yield,  $R_f = 0.5$ , *syn/anti* = 2.1:1). The enantiomeric ratio of the *syn* diastereomer was determined to be 89:11 by HPLC, [Lux 5u cellulose-4 column,  $\lambda = 254$  nm, hexanes:isopropanol = 8:2, 1.0 mL/min, t (minor) = 18.9 min, t (minor) = 24.9 min, t (minor) = 28.5 min, t (major) = 35.9 min].  $[\alpha]_{25}^{D} = -12.22$  (*c* = 0.18, CHCl<sub>3</sub>); <sup>1</sup>**H**-**NMR** (400 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  7.67 (d, *J* = 5.7 Hz, 1H), 7.24 (s, 2H), 7.23 - 7.15 (m, 1H), 7.08 - 6.95 (m, 1H), 6.92 (dd, *J* = 9.4, 2.3 Hz, 1H), 6.02 (d, *J* = 5.7 Hz, 1H), 3.89 (s, 1H), 1.40 (s, 3H). <sup>13</sup>**C-NMR** (100 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  171.93, 163.82, 160.21, 151.75, 151.62, 131.97, 131.87, 121.48, 121.17, 116.80 (d, *J* = 3.1 Hz), 111.53 (d, *J* = 21.7 Hz), 104.13 (d, *J* = 25.5 Hz), 92.47, 50.29, 42.92, 21.03. **FTIR** (KBr) cm<sup>-1</sup>: 3475, 3312, 3195, 2924, 2192,

1745, 1648, 1501, 1409, 1148, 1111. **HRMS-ESI:** [M+Na]<sup>+</sup>, calcd for C<sub>15</sub>H<sub>11</sub>FN<sub>2</sub>NaO<sub>3</sub> 309.0646, found 309.0651.

# 

**nitro-4***H***-chromene-3-carbonitrile (3g):** To the suspension of iminochromene **1g** (0.1 mmol) in anhydrous dichloromethane (1 ml), catalyst **III** (10 mol%) and then  $\alpha$ -Angelica lactone **2** (0.15 mmol) were added under the N<sub>2</sub> gas atmosphere. The resulting reaction mixture was stirred at room temperature for 16 h. The *syn/ anti* ratio (4:1) was determined by <sup>1</sup>H NMR analysis of the crude

(S)-2-amino-4-((S)-2-methyl-5-oxo-2,5-dihydrofuran-2-yl)-6-

product ( $\delta$  major: 3.77 ppm,  $\delta$  minor: 3.90 ppm). The crude reaction mixture was purified by column chromatography on silica gel using ethylacetate/DCM (3:7) as eluent afforded the desire product **3g** yellow solid (12 mg, 40% yield,  $R_f = 0.3$ , *syn/anti* = 4:1). The enantiomeric ratio of the *syn* diastereomer was determined to be 87:13 by HPLC, [ID column,  $\lambda = 254$  nm, hexanes:isopropanol = 8:2, 1.0 mL/min, t (major) = 20.7 min, t (minor) = 22.7 min, t (minor) = 24.8 min, t (minor) = 37.5min].  $[\alpha]_{25}^D = +20.0$  (c = 0.06, CHCl<sub>3</sub>); <sup>1</sup>H-NMR (400 MHz, DMSO- $d_6$ )  $\delta$  8.21 (s, 2H), 7.71 (d, J = 5.4 Hz, 1H), 7.43 (s, 2H), 7.30 (d, J = 9.3 Hz, 1H), 6.16 (d, J = 5.2 Hz, 1H), 4.17 (s, 1H), 1.46 (s, 3H). <sup>13</sup>C-NMR (100 MHz, DMSO- $d_6$ )  $\delta$  171.30, 162.66, 158.86, 154.90, 143.20, 125.66, 124.59, 121.82, 121.35, 120.26, 117.32, 91.16, 49.44, 42.27, 20.91. FTIR (KBr) cm<sup>-1</sup>: 3421, 3328, 3202, 2928, 2195, 1742, 1649, 1525, 1415, 1258, 1092. HRMS-ESI: [M+Na]<sup>+</sup>, calcd for C<sub>15</sub>H<sub>11</sub>N<sub>3</sub>NaO<sub>5</sub> 336.0591, found 336.0596.



(S)-2-amino-7-methoxy-4-((S)-2-methyl-5-oxo-2,5-dihydrofuran-2-yl)-4*H*-chromene-3-carbonitrile (3h): To the suspension of iminochromene 1h (0.1 mmol) in anhydrous dichloromethane (1 ml), catalyst III (10 mol%) and then  $\alpha$ -Angelica lactone (0.15 mmol) were added under the N<sub>2</sub> gas atmosphere. The resulting reaction mixture was stirred at room temperature for 16 h. The *syn/anti* ratio (2.7:1) was determined by <sup>1</sup>H NMR analysis of the

crude product ( $\delta$  major: 3.55 ppm,  $\delta$  minor: 3.75 ppm). The crude reaction mixture was purified by column chromatography on silica gel using ethylacetate/DCM (3:7) as eluent afforded the desire product **3h** as white solid (19 mg, 63% yield,  $R_f = 0.5$ , *syn/anti* = 2.7:1). The enantiomeric ratio of the *syn* diastereomer was determined to be 87:13 by HPLC, [IE

column,  $\lambda = 254$  nm, hexanes:isopropanol = 8:2, 1.0 mL/min, t (minor) = 24.9 min, t (major) = 26.9 min, t (minor) = 30.8 min, t (minor) = 33.0 min].  $[\alpha]_{25}^D = -1.33$  (c = 0.15, CHCl<sub>3</sub>); <sup>1</sup>H-NMR (400 MHz, DMSO- $d_6$ )  $\delta$  7.64 (d, J = 5.4 Hz, 1H), 7.25 – 6.98 (m, 3H), 6.72 (d, J = 6.2Hz, 1H), 6.55 (s, 1H), 6.03 (d, J = 5.4 Hz, 1H), 3.79 (s, 1H), 3.74 (s, 3H), 1.39 (s, 3H). <sup>13</sup>C-NMR (100 MHz, DMSO- $d_6$ )  $\delta$  171.65, 163.69, 159.90, 159.43, 151.38, 130.71, 121.36, 120.73, 111.95, 110.27, 101.15, 92.31, 55.46, 50.14, 42.68, 20.69. FTIR (KBr) cm<sup>-1</sup>: 3448, 3332, 3203, 2924, 2852, 2185, 1748, 1652, 1510, 1408, 1251, 1111. HRMS-ESI: [M+Na]<sup>+</sup>, calcd for C<sub>15</sub>H<sub>14</sub>N<sub>2</sub>NaO<sub>4</sub> 321.0845, found 321.0851.

### (S)-2-amino-6-methyl-4-((S)-2-methyl-5-oxo-2,5-dihydrofuran-2-



yl)-4*H*-chromene-3-carbonitrile (3i): To the suspension of iminochromene 1i (0.1 mmol) in anhydrous dichloromethane (1 ml), catalyst III (10 mol%) and then  $\alpha$ -Angelica lactone 2 (0.15 mmol) were added under the N<sub>2</sub> gas atmosphere. The resulting reaction mixture was stirred at room temperature for 16 h. The *syn/anti* ratio (2.3:1) was determined by <sup>1</sup>H NMR analysis of the crude product ( $\delta$ 

major: 3.75 ppm,  $\delta$  minor: 3.81 ppm). The crude reaction mixture was purified by column chromatography on silica gel using ethylacetate/DCM (3:7) as eluent afforded the desire product **3i** as white solid (17 mg, 61% yield,  $R_f = 0.5$ , *syn/anti* = 2.3:1). The enantiomeric ratio of the *syn* diastereomer was determined to be 86:14 by HPLC, [IC column,  $\lambda = 254$  nm, hexanes:isopropanol = 8:2, 1.0 mL/min, t (major) = 25.1 min, t (minor) = 40.2 min, t (major) = 51.7 min, t (minor) = 71.1 min].  $[\alpha]_{25}^D = -6.67$  (c = 0.03, CHCl<sub>3</sub>); <sup>1</sup>H-NMR (400 MHz, DMSO- $d_6$ )  $\delta$  7.63 (dd, J = 5.7, 2.0 Hz, 1H), 7.17 (s, 2H), 7.09 (s, 1H), 7.00 (s, 1H), 6.92 (d, J = 8.2 Hz, 1H), 6.05 (dd, J = 5.7, 2.0 Hz, 1H), 3.81 (s, 1H), 2.26 (s, 3H), 1.40 (s, 3H). <sup>3</sup>C-NMR (75 MHz, DMSO- $d_6$ )  $\delta$  171.47, 163.80, 159.69, 148.55, 132.81, 130.09, 129.19, 121.29, 120.64, 119.72, 115.58, 92.01, 49.54, 43.21, 20.65, 20.31. FTIR (KBr) cm<sup>-1</sup>: 3416, 3325, 3198, 2924, 2852, 2187, 1749, 1648, 1428, 1258, 1178, 1107. HRMS-ESI: [M+Na]<sup>+</sup>, calcd for C<sub>16</sub>H<sub>14</sub>N<sub>2</sub>NaO<sub>3</sub> 305.0897, found 305.0888.

### (S)-2-amino-8-methoxy-4-((S)-2-methyl-5-oxo-2,5-dihydrofuran-



2-yl)-6-nitro-4*H*-chromene-3-carbonitrile (3j): To the suspension of iminochromene 1j (0.1 mmol) in anhydrous dichloromethane (1 ml), catalyst III (10 mol%) and then  $\alpha$ -Angelica lactone 2 (0.15 mmol) were added under the N<sub>2</sub> gas atmosphere. The resulting reaction mixture was stirred at room temperature for 16 h. The *syn/anti* ratio (2.3:1) was determined by <sup>1</sup>H NMR analysis of the crude product ( $\delta$  major: 3.74 ppm,  $\delta$  minor: 3.87 ppm). The crude reaction mixture was purified by column chromatography on silica gel using ethylacetate/DCM (3:7) as eluent afforded the desire product **3j** as yellow solid (40% yield,  $R_f = 0.4$ , *syn/anti* = 2:1). The enantiomeric ratio of the *syn* diastereomer was determined to be 89:11 by HPLC, [ID column,  $\lambda = 254$  nm, hexanes:isopropanol = 8:2, 1.0 mL/min, t (minor) = 25.7 min, t (major) = 28.1 min, t (minor) = 31.8 min, t (minor) = 34.6 min].  $[\alpha]_{25}^{D} = +7.0$  (*c* = 0.08, CHCl<sub>3</sub>); <sup>1</sup>H-NMR (300 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  <sup>1</sup>H NMR (300 MHz, DMSO)  $\delta$  7.77 (m, 3H), 7.47 (s, 2H), 6.02 (d, *J* = 5.7 Hz, 1H), 4.09 (s, 1H), 3.93 (s, 3H), 1.42 (s, 3H). <sup>13</sup>C-NMR (75 MHz, DMSO-*d*<sub>6</sub>)  $\delta$   $\delta$  171.27, 162.88, 159.52, 147.45, 144.70, 142.83, 121.50, 120.77, 117.08, 106.55, 91.73, 56.51, 49.37, 42.56, 20.54. FTIR (KBr) cm<sup>-1</sup>: 3381, 3329, 2924, 2854, 2194, 1746, 1655, 1529, 1416, 1344, 1227, 1104, 960, 825. HRMS-ESI: [M+Na]<sup>+</sup>, calcd for C<sub>16</sub>H<sub>13</sub>N<sub>3</sub>NaO<sub>6</sub> 366.0696, found 366.0704.

(S)-2-amino-6-bromo-8-methoxy-4-((S)-2-methyl-5-oxo-2,5-



dihydrofuran-2-yl)-4*H*-chromene-3-carbonitrile (3k): To the suspension of iminochromene 1k in anhydrous dichloromethane (1 ml), catalyst III (10 mol%) and then  $\alpha$ -Angelica lactone 2 (0.15 mmol) were added under the N<sub>2</sub> gas atmosphere. The resulting reaction mixture was stirred at room temperature for 16 h. The *syn/anti* ratio (2.7:1) was determined by <sup>1</sup>H NMR analysis of crude

product ( $\delta$  major: 3.61 ppm,  $\delta$  minor: 3.78 ppm). The crude reaction mixture was purified by column chromatography on silica gel using ethylacetate/DCM (3:7) as eluent afforded the desire product **3k** (27 mg, 67% yield,  $R_f$ =0.4, *syn/anti* = 2.7:1). The enantiomeric ratio of the *syn* diastereomer was determined to be 93:7 by HPLC, [ID column,  $\lambda$  = 254 nm, hexanes:isopropanol = 8:2, 1.0 mL/min, t (major) = 21.0 min, t (minor) = 22.6 min, t (minor) = 27.6 min, t (minor) = 29.4 min].  $[\alpha]_{25}^D$  = +13.75 (*c* = 0.24, CHCl<sub>3</sub>); <sup>1</sup>**H-NMR** (400 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  7.69 (d, *J* = 5.5 Hz, 1H), 7.28 (s, 2H), 7.20 (s, 1H), 6.99 (s, 1H), 6.07 (d, *J* = 5.5 Hz, 1H), 3.88 (s, 1H), 3.83 (s, 3H), 1.40 (s, 3H). <sup>13</sup>**C-NMR** (100 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  171.39, 163.46, 159.62, 147.93, 139.33, 123.38, 122.83, 120.91, 120.61, 115.21, 114.68, 91.82, 56.22, 49.37, 42.79, 20.63. **FTIR (KBr) cm<sup>-1</sup>:** 3405, 3325, 2925, 2187, 1749, 1652, 1575, 1483, 1420, 1263, 1101. **HRMS-ESI:** [M+Na]<sup>+</sup>, calcd for C<sub>16</sub>H<sub>13</sub>BrN<sub>2</sub>NaO<sub>4</sub> 398.9950, found 398.9956.



(S)-3-amino-1-((S)-2-methyl-5-oxo-2,5-dihydrofuran-2-yl)-1*H*benzo[*f*]chromene-2-carbonitrile (31): To the suspension of iminochromene 11 (0.1 mmol) in anhydrous dichloromethane (1 ml), catalyst III (10 mol%) and then  $\alpha$ -Angelica lactone 2 (0.15 mmol) were added under the N<sub>2</sub> gas atmosphere. The resulting reaction mixture was stirred at room temperature for 24 h. The *syn/anti* ratio (1:1) was determined by <sup>1</sup>H NMR analysis of crude product ( $\delta$  major: 4.63 ppm,

δ minor: 4.75 ppm). The crude reaction mixture was purified by column chromatography on silica gel using ethylacetate/DCM (3:7) as eluent afforded the desire product **31** (13 mg, 40% yield,  $R_f$ =0.5, *syn/anti* = 1:1). The enantiomeric ratio of the *syn* diastereomer was determined to be 83:17 by HPLC, [ID column,  $\lambda$  = 254 nm, hexanes:isopropanol = 8:2, 1.0 mL/min, t (major) = 19.8 min, t (minor) = 23.5 min, t (major) = 26.5 min, t (major) = 28.6 min].  $[\alpha]_{25}^{D}$  = +5.00 (*c* = 0.06, CHCl<sub>3</sub>); <sup>1</sup>**H**-**NMR** (400 MHz, DMSO-*d*<sub>6</sub>) δ 8.23 (s, 1H), 7.91 (s, 2H), 7.61 (s, 2H), 7.49 (s, 1H), 7.28 (m, 3H), 5.62 (s, 1H), 4.63 (s, 1H), 1.55 (s, 3H). <sup>13</sup>**C**-**NMR** (100 MHz, DMSO-*d*<sub>6</sub>) δ 171.29, 163.98, 159.10, 148.91, 130.60, 130.25, 129.29, 128.28, 126.79, 124.77, 123.83, 121.35, 119.19, 116.46, 113.72, 92.92, 50.28, 38.86, 20.95. **FTIR (KBr) cm**<sup>-1</sup>: 3448, 3322, 2925, 2185, 1748, 1645, 1587, 1412, 1243, 1105. **HRMS-ESI:** [M+Na]<sup>+</sup>, calcd for C<sub>19</sub>H<sub>14</sub>N<sub>2</sub>NaO<sub>3</sub> 341.0896 , found 341.0902.



(S)-2-amino-6-bromo-4-((S)-2-ethyl-5-oxo-2,5-dihydrofuran-2-yl)-8-methoxy-4H-chromene-3-carbonitrile (3m): To the suspension of iminochromene 1k in anhydrous dichloromethane (1 ml), catalyst III (10 mol%) and then 5-ethylfuran-2(3H)-one (0.15 mmol) were added under the N<sub>2</sub> gas atmosphere. The resulting reaction mixture was stirred at room temperature for 16 h. The *syn/anti* ratio (2.1:1) was determined by <sup>1</sup>H NMR analysis of crude product ( $\delta$  major: 3.67 ppm,

δ minor: 3.86 ppm). The crude reaction mixture was purified by column chromatography on silica gel using ethylacetate/DCM (3:7) as eluent afforded the desire product **3m** (28 mg, 71% yield,  $R_f$  =0.4, *syn/anti* = 2.1:1). The enantiomeric ratio of the *syn* diastereomer was determined to be 95:5 by HPLC, [Lux cellulose-4 column,  $\lambda$  = 254 nm, hexanes:isopropanol = 8:2, 1.0 mL/min, t (minor) = 44.9 min, t (minor) = 52.5 min, t (minor) = 83.0 min, t

(major) = 117.4 min].  $[\alpha]_{25}^{D}$  = +0.12 (*c* = 0.27, CHCl<sub>3</sub>); <sup>1</sup>**H-NMR** (300 MHz, CDCl<sub>3</sub>)  $\delta$  7.43 (d, *J* = 5.7 Hz, 1H), 6.99 (d, *J* = 2.9 Hz, 2H), 6.15 (d, *J* = 5.7 Hz, 1H), 5.08 (s, 2H), 3.87 (s, 3H), 3.67 (s, 1H), 1.83 – 1.73 (m, 2H), 0.71 (t, *J* = 7.3 Hz, 3H). <sup>13</sup>**C-NMR** (75 MHz, CDCl<sub>3</sub>)  $\delta$  171.80, 162.92, 156.71, 148.27, 139.44, 124.10, 123.45, 121.90, 117.35, 115.16, 94.74, 56.44, 54.12, 44.69, 29.81, 7.29. **FTIR** (KBr) cm<sup>-1</sup>: 3402, 3319, 2922, 2185, 1748, 1651, 1573, 1481, 1416, 1260, 1104. **HRMS-ESI**: [M+Na]<sup>+</sup>, calcd for C<sub>17</sub>H<sub>15</sub>BrN<sub>2</sub>NaO<sub>4</sub> 413.0113, found 413.0119.

(S)-2-amino-6,8-dichloro-4-((S)-5-oxo-2-propyl-2,5-dihydrofuran-2-



yl)-4*H*-chromene-3-carbonitrile (3n): To the suspension of iminochromene 1d in anhydrous dichloromethane (1 ml), catalyst III (10 mol%) and then 5-propylfuran-2(3H)-one (0.15 mmol) were added under the N<sub>2</sub> gas atmosphere. The resulting reaction mixture was stirred at room temperature for 16 h. The *syn/anti* ratio (9:1) was determined by <sup>1</sup>H NMR analysis of crude product ( $\delta$  major: 3.67 ppm,

δ minor: 3.87 ppm). The crude reaction mixture was purified by column chromatography on silica gel using ethylacetate/DCM (3:7) as eluent afforded the desire product **3n** (27 mg, 75% yield,  $R_f$ =0.4, *syn/anti* = 9:1). The enantiomeric ratio of the *syn* diastereomer was determined to be 89:11 by HPLC, [Lux cellulose-4 column,  $\lambda$  = 254 nm, hexanes:isopropanol = 8:2, 1.0 mL/min, t (minor) = 19.5 min, t (minor) = 22.8 min, t (minor) = 34.0 min, t (major) = 48.7 min].  $[\alpha]_{25}^D$  = -0.02 (*c* = 0.16, CHCl<sub>3</sub>); <sup>1</sup>**H-NMR** (300 MHz, CDCl<sub>3</sub>) δ 7.51 (d, *J* = 5.7 Hz, 1H), 7.38 (d, *J* = 2.3 Hz, 1H), 7.18 (d, *J* = 2.3 Hz, 1H), 6.16 (d, *J* = 5.7 Hz, 1H), 5.21 (s, 2H), 3.67 (s, 1H), 1.77 – 1.72 (m, 2H), 1.25 – 1.03 (m, 3H), 0.84 (t, *J* = 7.1 Hz, 4H). <sup>13</sup>**C-NMR** (75 MHz, CDCl<sub>3</sub>) δ 171.54, 162.66, 156.91, 145.34, 130.17, 129.90, 128.60, 124.18, 123.26, 122.75, 122.26, 94.27, 54.16, 45.29, 33.43, 16.49, 14.11. **FTIR** (KBr) cm<sup>-1</sup>: 3443, 3334, 3209, 2928, 2851, 2185, 1745, 1652, 1614, 1510, 1408, 1252, 1162, 961, 825. **HRMS-ESI**: [M+Na]<sup>+</sup>, calcd for C<sub>17</sub>H<sub>14</sub>N<sub>2</sub>NaO<sub>4</sub> 387.0279, found 387.0285.

# 7. Crystallographic data

Assignment of the absolute configuration of *syn*-3i by X-Ray Diffraction analysis:





# Identification code

| 3i |
|----|
|    |

| Empirical<br>formula | $C_{16}H_{14}N_2O_3$                              | Density (calculated)                    | 1.369 g/cm <sup>3</sup>                |
|----------------------|---------------------------------------------------|-----------------------------------------|----------------------------------------|
| Formula weight       | 282.29                                            | Absorption coefficient                  | 0.096 mm <sup>-1</sup>                 |
| Temperature          | 305(2)                                            | F(000)                                  | 296.0                                  |
| Wavelength           | 0.71073 Å                                         | Crystal size                            | 0.21 x 0.19 x 0.17 mm <sup>3</sup>     |
| Crystal system       | Triclinic                                         | Theta range for data collection         | 2.622 to 28.458°                       |
| Space group          | P -1                                              | Index ranges                            | -8<=h<=8,<br>-10<=k<=10,<br>-19<=l<=19 |
| Unit cell dimensions | a = 6.158(5)Å,<br>$\alpha = 79.963(15)^{\circ}$   | Reflections collected                   | 21232                                  |
|                      | b = $7.899(6)$ Å,<br>$\beta = 87.426(16)^{\circ}$ | Completeness to theta $= 25.00^{\circ}$ | 99.4%                                  |
|                      | c = 14.325(10)  Å,<br>$\gamma = 86.68(2)^{\circ}$ | R indices (all data)                    | R1 = 0.1088, wR2 = 0.1934              |

| Volume | 684.5(9) Å <sup>3</sup> | CCDC | 1889051 |
|--------|-------------------------|------|---------|
| Ζ      | 2                       |      |         |

# 8. References

- (a) Li, H.; Wang, Y.; Tang, L.; Deng. L. J. Am. Chem. Soc. 2004, 126, 9906. (b) Li, H.; Wang, Y.; Tang, L.; Wu, F.; Liu, X. Guo, C.; Foxman, B. M.; Deng, L. Angew. Chem. Int. Ed. 2005, 44, 105. (c) Song, J.; Wang, Y.; Deng, L. J. Am. Chem. Soc. 2006, 128, 6048.
  (d) Wang, Y.; Li, H.; Wang, Y.-Q.; Liu, Y.; Foxman, B. M.; Deng, L. J. Am. Chem. Soc. 2007, 129, 6364. (e) Singh, R. P.; Foxman, B. M.; Deng, L. J. Am. Chem. Soc. 2010, 132, 9558.
- 2. Li, W.; Liu, H.; Jiang, X.; Wang, J. ACS Catal. 2012, 2, 1535.

# 9. <sup>1</sup>H and <sup>13</sup>C Spectra of Compounds









S18



























# **10. HPLC Spectra of Compounds**







HPLC, Chiralpak ID, hexanes: isopropanol = 8:2, 1.0 mL/min,  $\lambda$ = 254 nm.





HPLC, Chiralpak ID, hexanes: isopropanol = 8:2, 1.0 mL/min,  $\lambda$ = 254 nm.





HPLC, Lux cellulose-4 column, hexanes: isopropanol = 8:2, 1.0 mL/min,  $\lambda$ = 254 nm.



| Signa       | 1 1: VWD1                           | A, Wavelen                 | gth=245 nm                           |                                    |                              |
|-------------|-------------------------------------|----------------------------|--------------------------------------|------------------------------------|------------------------------|
| Peak        | RetTime Ty                          | pe Width                   | Area                                 | Height                             | Area                         |
| #           | [min]                               | [min]                      | [mAU*s]                              | [mAU]                              | %                            |
|             |                                     |                            |                                      |                                    |                              |
| 1           | 20.572 BB                           | 0.7485                     | 7548.50537                           | 151.18475                          | 7.9170                       |
| 2           | 29.425 BB                           | 1.0716                     | 4.01268e4                            | 547.80701                          | 42.0857                      |
| 3           | 35.882 MM                           | 1.3326                     | 7245.13281                           | 90.61201                           | 7.5988                       |
| 4           | 40.987 BB                           | 1.5464                     | 4.04251e4                            | 368.06082                          | 42.3985                      |
| 2<br>3<br>4 | 29.425 BB<br>35.882 MM<br>40.987 BB | 1.0716<br>1.3326<br>1.5464 | 4.01268e4<br>7245.13281<br>4.04251e4 | 547.80701<br>90.61201<br>368.06082 | 42.0857<br>7.5988<br>42.3985 |



HPLC, Lux cellulose-4 column, hexanes: isopropanol = 8:2, 1.0 mL/min,  $\lambda$ = 254 nm.



| Wavelen        | gth=254 nm                                                            |                                                                                                                                      |                                                                                                                                                                                           |
|----------------|-----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Width<br>[min] | Area<br>[mAU*s]                                                       | Height<br>[mAU]                                                                                                                      | Area<br>%                                                                                                                                                                                 |
|                |                                                                       |                                                                                                                                      |                                                                                                                                                                                           |
| 0.8644         | 1.61819e4                                                             | 282.03174                                                                                                                            | 10.7160                                                                                                                                                                                   |
| 1.0983         | 5.94764e4                                                             | 745.05573                                                                                                                            | 39.3866                                                                                                                                                                                   |
| 1.2726         | 1.56680e4                                                             | 189.50336                                                                                                                            | 10.3757                                                                                                                                                                                   |
| 1.5716         | 5.96802e4                                                             | 519.00012                                                                                                                            | 39.5216                                                                                                                                                                                   |
|                | Wavelen<br>Width<br>[min]<br><br>0.8644<br>1.0983<br>1.2726<br>1.5716 | Wavelength=254 nm<br>Width Area<br>[min] [mAU*s]<br><br>0.8644 1.61819e4<br>1.0983 5.94764e4<br>1.2726 1.56680e4<br>1.5716 5.96802e4 | Wavelength=254 nm<br>Width Area Height<br>[min] [mAU*s] [mAU]<br><br>0.8644 1.61819e4 282.03174<br>1.0983 5.94764e4 745.05573<br>1.2726 1.56680e4 189.50336<br>1.5716 5.96802e4 519.00012 |



HPLC, Lux cellulose-4 column, hexanes: isopropanol = 8:2, 1.0 mL/min,  $\lambda$ = 254 nm.



| Signa     | 1 1: VWD1 A,          | Waveleng       | th=254 nm       |                 |           |
|-----------|-----------------------|----------------|-----------------|-----------------|-----------|
| Peak<br># | RetTime Type<br>[min] | Width<br>[min] | Area<br>[mAU*s] | Height<br>[mAU] | Area<br>% |
|           |                       |                |                 |                 |           |
| 1         | 19.092 BB             | 0.6046         | 5154.63721      | 128.32356       | 16.5378   |
| 2         | 24.779 BB             | 0.7684         | 1.04534e4       | 206.20622       | 33.5380   |
| 3         | 28,491 BB             | 0.8704         | 5105.89111      | 89.65244        | 16.3814   |
| 4         | 36.426 BB             | 1.0576         | 1.04549e4       | 151.98244       | 33.5429   |



HPLC, Chiralpak ID, hexanes: isopropanol = 8:2, 1.0 mL/min,  $\lambda$ = 254 nm.



| Signal 1: VWD1 A, Wa | aveleng | th=254 nm  |           |         |  |
|----------------------|---------|------------|-----------|---------|--|
| Peak RetTime Type    | Width   | Area       | Height    | Area    |  |
| # [min]              | [min]   | [mAU*s]    | [mAU]     | %       |  |
| 1 21.107 BV R        | 0.6728  | 6118.74072 | 137.33020 | 44.0105 |  |
| 2 23.210 VV E        | 0.7322  | 814.91644  | 16.91070  | 5.8615  |  |
| 3 25.000 VB          | 0.8356  | 6159.41650 | 109.44867 | 44.3031 |  |
| 4 38.808 BB          | 1.2101  | 809.83032  | 8.54940   | 5.8249  |  |
| J Totals :           |         | 1.39029e4  | 272.23897 |         |  |



HPLC, Chiralpak IE column, hexanes: isopropanol = 8:2, 1.0 mL/min,  $\lambda$ = 254 nm.



| Signal 1: VWD1 A, | Wavelen | gth=254 nm |           |         |
|-------------------|---------|------------|-----------|---------|
| Peak RetTime Type | Width   | Area       | Height    | Area    |
| # [min]           | [min]   | [mAU*s]    | [mAU]     | %       |
|                   |         |            |           |         |
| 1 26.131 BB       | 0.6917  | 788.41724  | 17.80034  | 3.1772  |
| 2 28.110 BB       | 0.7549  | 1.15592e4  | 233.75085 | 46.5816 |
| 3 32.563 BV E     | 0.7589  | 750.13708  | 14.53911  | 3.0229  |
| 4 34.035 VB R     | 0.9480  | 1.17172e4  | 187.00363 | 47.2183 |



HPLC, Chiralpak IC column, hexanes: isopropanol = 8:2, 1.0 mL/min,  $\lambda$ = 254 nm.



| Signa     | al 1: VWD1         | . A, Wavelen       | gth=254 nm      |                 |           |
|-----------|--------------------|--------------------|-----------------|-----------------|-----------|
| Peak<br># | RetTime T<br>[min] | ype Width<br>[min] | Area<br>[mAU*s] | Height<br>[mAU] | Area<br>% |
|           | -                  |                    |                 |                 |           |
| 1         | 25.472 B           | B 0.7770           | 1.72534e4       | 340.61041       | 20.9633   |
| 2         | 40.613 B           | B 1.2291           | 1.74665e4       | 218.39073       | 21.2223   |
| 3         | 52.354 B           | B 1.4043           | 2.45017e4       | 246.13969       | 29.7703   |
| 4         | 71.091 B           | B 1.7584           | 2.30810e4       | 179.71390       | 28.0441   |



HPLC, Chiralpak ID column, hexanes: isopropanol = 8:2, 1.0 mL/min,  $\lambda$ = 254 nm.





HPLC, Chiralpak ID column, hexanes: isopropanol = 8:2, 1.0 mL/min,  $\lambda$ = 254 nm.





HPLC, Chiralpak ID column, hexanes: isopropanol = 8:2, 1.0 mL/min,  $\lambda$ = 254 nm.





HPLC, Lux cellulose-4 column, hexanes: isopropanol = 8:2, 1.0 mL/min,  $\lambda$ = 254 nm.



| 160                                                      | RAC eth lact lux-4 8_2 1m                                   | l 254nm.D)                                                               |                                                       |
|----------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------|
| 140                                                      |                                                             |                                                                          |                                                       |
| 100 -                                                    |                                                             |                                                                          |                                                       |
| 80                                                       |                                                             |                                                                          |                                                       |
| eo                                                       | n bear of the                                               | 0                                                                        | $\bigwedge$                                           |
| 40 -                                                     |                                                             |                                                                          |                                                       |
| 20-                                                      |                                                             |                                                                          |                                                       |
| 20 40                                                    | 60                                                          | 80 100                                                                   | 120 mir                                               |
|                                                          |                                                             |                                                                          |                                                       |
|                                                          |                                                             |                                                                          |                                                       |
| Signal 1: VWD1 A, Wa                                     | avelengtl                                                   | n=254 nm                                                                 |                                                       |
| Signal 1: VWD1 A, Wa<br>Peak RetTime Type                | avelengt)<br>Width                                          | n=254 nm<br>Area                                                         | Area                                                  |
| Signal 1: VWD1 A, Wa<br>Peak RetTime Type<br># [min]     | avelengt)<br>Width<br>[min]                                 | n=254 nm<br>Area<br>[mAU*s]                                              | Area<br>%                                             |
| Signal 1: VWD1 A, Wa<br>Peak RetTime Type<br># [min]<br> | avelengt)<br>Width<br>[min]<br>                             | n=254 nm<br>Area<br>[mAU*s]                                              | Area<br>%                                             |
| Signal 1: VWD1 A, Wa<br>Peak RetTime Type<br># [min]<br> | Width<br>[min]<br> <br>1.8063                               | n=254 nm<br>Area<br>[mAU*s]<br> <br>1.05446e4                            | Area<br>%<br>  <br>16.4635                            |
| Signal 1: VWD1 A, Wa<br>Peak RetTime Type<br># [min]<br> | Width<br>[min]<br> <br>1.8063<br>1.9365                     | n=254 nm<br>Area<br>[mAU*s]<br> <br>1.05446e4<br>2.21597e4               | Area<br>%<br>  <br>16.4635<br>34.5984                 |
| Signal 1: VWD1 A, Wa<br>Peak RetTime Type<br># [min]<br> | Width<br>[min]<br> <br>1.8063<br>1.9365<br>3.1691           | n=254 nm<br>Area<br>[mAU*s]<br> <br>1.05446e4<br>2.21597e4<br>9715.00879 | Area<br>%<br>16.4635<br>34.5984<br>15.1683            |
| Signal 1: VWD1 A, Wa<br>Peak RetTime Type<br># [min]<br> | Width<br>[min]<br> <br>1.8063<br>1.9365<br>3.1691<br>5.0482 | Area<br>[mAU*s]<br><br>1.05446e4<br>2.21597e4<br>9715.00879<br>2.16290e4 | Area<br>%<br>16.4635<br>34.5984<br>15.1683<br>33.7698 |



HPLC, Lux cellulose-4 column, hexanes: isopropanol = 8:2, 1.0 mL/min,  $\lambda$ = 254 nm.





#### HPLC data for Reaction performed at 5 mmol scale:

CI

HPLC, Chiralpak ID, hexanes: isopropanol = 8:2, 1.0 mL/min,  $\lambda$ = 254 nm.

