Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

## **Supplementary Data for**

## The easy synthesis of new *N*-substitute 5-oxindolinerhodanines and sensing ability: *The recognition of acetate ions in aqueous solution*

Sinan Bayindir\* and Kemal Yararlı

Department of Chemistry, Faculty of Sciences and Arts, Bingol University, Bingol,

Turkey

E-mail: sbayindir@bingol.edu.tr

## Contents

| Colorimetric screening of <i>5-OxI-Rh</i> (A and D), <b>5a</b> (B and E) and <b>5e</b> (C) (5 $\mu$ M) in CH <sub>3</sub> CN or in CH <sub>3</sub> CN/H <sub>2</sub> O (v/v: 1/1) with the presence of 10 equiv. of anions                                | 2     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| UV-vis spectrums of <b>5a</b> (5 $\mu$ M) in CH <sub>3</sub> CN ( <b>A</b> ) and CH <sub>3</sub> CN /H <sub>2</sub> O ( $\nu/\nu$ :1/1, <b>B</b> ) with various anions                                                                                    | 3     |
| UV-vis spectrum of 5-OxI-Rh and 5-OxI-Rh-HEPES (5 µM in CH <sub>3</sub> CN/H <sub>2</sub> O (v/v: 1/1).                                                                                                                                                   | 4     |
| UV-vis titration of <b>5-OxI-Rh</b> (5 $\mu$ M) with the increasing concentration of [Bu <sub>4</sub> N]BnO in CH <sub>3</sub> CN/H <sub>2</sub> O ( $\nu/\nu$ : $1/1$ ).                                                                                 | 5     |
| Fluorescence titration of <b>5-OxI-Rh</b> (5 $\mu$ M) with the increasing concentration of [Bu <sub>4</sub> N]BnO in CH <sub>3</sub> CN/H <sub>2</sub> O ( $\nu/\nu$ : $1/1$ ).                                                                           | 6     |
| LC-MS (ESI) spectrum of [5-OxI-Rh-AcO <sup>-</sup> ] complex.                                                                                                                                                                                             | 7     |
| Benesi-Hildebrand plot based on a 1:1 association stoichiometry between <i>5-OxI-Rh</i> and BnO <sup>-</sup> , and the change fluorescence intensity of <i>5-OxI-Rh</i> with the increasing concentration of BnO <sup>-</sup> ( $\lambda_{exc}$ =386 nm). | 8     |
| Fluorescence spectra of <i>5-OxI-Rh</i> (5 $\mu$ M) + [[Bu <sub>4</sub> N]AcO] (30 $\mu$ M) at different pH (2–12)                                                                                                                                        | 9     |
| The NMR spectrums of 5-OxI-Rh and 5a-5h                                                                                                                                                                                                                   | 10-18 |



**Fig. S1.** Colorimetric screening of *5-OxI-Rh* (A and D), **5a** (B and E) and **5e** (C) (5  $\mu$ M) in CH<sub>3</sub>CN or in CH<sub>3</sub>CN/H<sub>2</sub>O (v/v: 1/1) with the presence of 10 equiv. of anions.



Fig. S2. UV-vis spectrums of 5a (5  $\mu$ M) in CH<sub>3</sub>CN (A) and CH<sub>3</sub>CN /H<sub>2</sub>O ( $\nu/\nu$ :1/1, B) with various anions



**Fig. S3.** UV-vis spectrum of *5-OxI-Rh* and *5-OxI-Rh*-HEPES (5  $\mu$ M in CH<sub>3</sub>CN/H<sub>2</sub>O (v/v: 1/1).



**Fig. S4.** UV-vis titration of **5-**OxI-Rh (5  $\mu$ M) with the increasing concentration of [Bu<sub>4</sub>N]BnO in CH<sub>3</sub>CN/H<sub>2</sub>O (v/v: 1/1).



**Fig. S5.** Fluorescence titration of *5-OxI-Rh* (5  $\mu$ M) with the increasing concentration of [Bu<sub>4</sub>N]BnO in CH<sub>3</sub>CN/H<sub>2</sub>O ( $\nu/\nu$ : 1/1).



Fig. S6. LC-MS (ESI) spectrum of [5-OxI-Rh-AcO<sup>-</sup>] complex.



**Fig. S7.** Benesi-Hildebrand plot based on a 1:1 association stoichiometry between *5-OxI-Rh* and BnO<sup>-</sup>, and the change fluorescence intensity of *5-OxI-Rh* with the increasing concentration of BnO<sup>-</sup> ( $\lambda_{exc}$ =386 nm).



**Fig. S8.** Fluorescence spectra of *5-OxI-Rh* (5  $\mu$ M) + [[**Bu**<sub>4</sub>N]AcO] (30  $\mu$ M) at different pH (2–12)





Fig. S9. <sup>1</sup>H-NMR (400 MHz) and <sup>13</sup>C-NMR (100 MHz) spectrums of 5-OxI-Rh in DMSO-d<sub>6</sub>.



Fig. S10. <sup>1</sup>H-NMR (400 MHz) and <sup>13</sup>C-NMR (100 MHz) spectrums of 5a in DMSO-d<sub>6</sub>.



Fig. S11. <sup>1</sup>H-NMR (600 MHz) and <sup>13</sup>C-NMR (150 MHz) spectrums of **5b** in DMSO-d<sub>6</sub>.



Fig. S12. <sup>1</sup>H-NMR (600 MHz) and <sup>13</sup>C-NMR (150 MHz) spectrums of 5c in DMSO-d<sub>6</sub>.



Fig. S13. <sup>1</sup>H-NMR (600 MHz) and <sup>13</sup>C-NMR (150 MHz) spectrums of 5d in DMSO-d<sub>6</sub>.



Fig. S14. <sup>1</sup>H-NMR (600 MHz) and <sup>13</sup>C-NMR (150 MHz) spectrums of 5e in DMSO-d<sub>6</sub>.

## 



Fig. S15. <sup>1</sup>H-NMR (600 MHz) and <sup>13</sup>C-NMR (150 MHz) spectrums of 5f in DMSO-d<sub>6</sub>.



Fig. S16. <sup>1</sup>H-NMR (600 MHz) and <sup>13</sup>C-NMR (150 MHz) spectrums of 5g in DMSO-d<sub>6</sub>.



Fig. S17. <sup>1</sup>H-NMR (600 MHz) and <sup>13</sup>C-NMR (150 MHz) spectrums of 5h in DMSO-d<sub>6</sub>.