Supporting Information

Theoretical investigations of the substituent effect on the electronic and charge transport properties of the butterfly molecules

Lijuan Wang, Jianhong Dai* and Yan Song*

School of Materials Science and Engineering, Harbin Institute of Technology at Weihai, 2West Wenhua Road, Weihai, 264209, China.

*E-mail: sy@hitwh.edu.cn; daijh@hit.edu.cn.

Contents

Figure S1. Optimized geometries of molecules 1 to 6.

Figure S2. Chemical structures of molecules 1 to 6, with atom indices labeled on the structures.

Figure S3. Contributions of the vibrational modes to the relaxation energies for molecules 1, 3 and 5, embedded with the normal modes contribute the most for the reorganization energies of holes.

Figure S4. Contributions of the vibrational modes to the relaxation energies for molecules 1 and 5, embedded with the normal modes contribute the most for the reorganization energies of electrons.

Figure S5. The pictorial HOMO-HOMO (a), and LUMO-LUMO (b) interactions of the most prominent pathway in molecule 1 from side view and top view.

Figure S6. The pictorial HOMO-HOMO (a), and LUMO-LUMO (b) interactions of the most prominent pathway in molecule 2 from side view and top view.

Figure S7. The pictorial HOMO-HOMO (a), and LUMO-LUMO (b) interactions of the most prominent pathway in molecule 3 from side view and top view.

Figure S8. The pictorial HOMO-HOMO (a), and LUMO-LUMO (b) interactions of the most prominent pathway in molecule 5 from side view and top view.

Figure S9. The crystal packing and short contact interactions of the dominated charge hopping routes in molecules 1 to 6.

Figure S10. The projecting angle-dependent hopping paths to a transistor channel in the *ab* plane (a) and the calculated angle-resolved anisotropic hole (b) and electron (c) mobilities of molecule 1.

Figure S11. The projecting angle-dependent hopping paths to a transistor channel in the *ab* plane (a) and the calculated angle-resolved anisotropic hole (b) and electron (c) mobilities of molecule 2.

Figure S12. The projecting angle-dependent hopping paths to a transistor channel in the *ab* plane (a) and the calculated angle-resolved anisotropic hole (b) and electron (c) mobilities of molecule 3.

Figure S13. The projecting angle-dependent hopping paths to a transistor channel in the *ab* plane (a) and the calculated angle-resolved anisotropic hole (b) and electron (c) mobilities of molecule 5.

Figure S14. Plots of the reduced density gradient versus the electron density multiplied by the sign of the second Hessian eigenvalue. The data are obtained at B3LYP-D3/6-311G* level.

Figure S15. Gradient isosurfaces for (a) dimer 1 of molecule 3, (b) dimer 1 of molecule 4, and (c) dimer 1 of molecule 6. The surfaces are colored on a blue-green-red scale according to values of sign(λ_2) ρ , ranging from -0.04 to 0.02 au. Blue indicates strong attractive interactions,

green indicates Van der Waals interactions and red indicates strong repulsion.

Table S1. The selected optimized bond lengths, bond angle and dihedral angles of molecules

 1 to 3 in the neutral and ionic states, together with experimental values (the unit of bond lengths is in angstroms, and the bond angles and dihedral angles are in degrees).

Table S2. The selected optimized bond lengths, bond angle and dihedral angles of molecules 4 to 6 in the neutral and ionic states, together with experimental values (the unit of bond lengths is in angstroms, and the bond angles and dihedral angles are in degrees).

Table S3. The transfer integrals of hole (V_{hole}) and electron ($V_{electron}$) (absolute value) for different hopping pathways of molecules 1 to 6 based on B3LYP/6-31G(d, p) level.

Table S4. The calculated average mobilities of hole $(\mu_{h,ave.})$ and electron $(\mu_{e,ave.})$ of molecules 1 to 6 based on B3LYP/6-31G (d, p) level.

Table S5 Intermolecular interaction energies for the most prominent dimers of molecules 3, 4 and
 6.

Table S6. The reorganization energies of hole (λ^+) and electron (λ^-) using adiabatic potential energy surfaces (APES) approach, the HOMO, LUMO energies, as well as the vertical and adiabatic ionization potentials (IP_V, IP_A) and electron affinities (EA_V, EA_A) of molecule 6 at B3LYP-D3/6-31G (d, p) level: All the data are in unit of eV.

Table S7 The transfer integrals of hole (V_{hole}) and electron $(V_{electron})$ (absolute value) for different hopping pathways and charge mobilities of hole and electron for molecule 6 based on B3LYP-D3/6-31G(d, p) level.

Figure S1. Optimized geometries of molecules 1 to 6.

Figure S2. Chemical structures of molecules 1 to 6, with atom indices labeled on the structures.

Figure S3. Contributions of the vibrational modes to the relaxation energies for molecules 1, 3 and 5, embedded with the normal modes contribute the most for the reorganization energies of holes.

Figure S4. Contributions of the vibrational modes to the relaxation energies for molecules 1 and 5, embedded with the normal modes contribute the most for the reorganization energies of electrons.

Figure S5. The pictorial HOMO-HOMO (a), and LUMO-LUMO (b) interactions of the most prominent pathway in molecule 1 from side view and top view.

Figure S6. The pictorial HOMO-HOMO (a), and LUMO-LUMO (b) interactions of the most prominent pathway in molecule 2 from side view and top view.

Figure S7. The pictorial HOMO-HOMO (a), and LUMO-LUMO (b) interactions of the most prominent pathway in molecule 3 from side view and top view.

Figure S8. The pictorial HOMO-HOMO (a), and LUMO-LUMO (b) interactions of the most prominent pathway in molecule 5 from side view and top view.

Figure S9. The crystal packing and short contact interactions of the dominated charge hopping routes in molecules 1 to 6.

Figure S10. The projecting angle-dependent hopping paths to a transistor channel in the *ab* plane (a) and the calculated angle-resolved anisotropic hole (b) and electron (c) mobilities of molecule 1.

Figure S11. The projecting angle-dependent hopping paths to a transistor channel in the *ab* plane (a) and the calculated angle-resolved anisotropic hole (b) and electron (c) mobilities of molecule 2.

Figure S12. The projecting angle-dependent hopping paths to a transistor channel in the *ab* plane (a) and the calculated angle-resolved anisotropic hole (b) and electron (c) mobilities of molecule 3.

Figure S13. The projecting angle-dependent hopping paths to a transistor channel in the *ab* plane (a) and the calculated angle-resolved anisotropic hole (b) and electron (c) mobilities of molecule 5.

Figure S14. Plots of the reduced density gradient versus the electron density multiplied by the sign of the second Hessian eigenvalue. The data are obtained at B3LYP-D3/6-311G* level.

Figure S15. Gradient isosurfaces for (a) dimer1 of molecule 3, (b) dimer 1 of molecule 4, and (c) dimer 1 of molecule 6. The surfaces are colored on a blue-green-red scale according to values of sign(λ_2) ρ , ranging from -0.04 to 0.02 au. Blue indicates strong attractive interactions, green indicates Van der Waals interactions and red indicates strong repulsion.

Molecule	Bond Parameters	Neutral	Expt. ¹	Cationic	Anionic
1	R(C2-C3)	1.49	1.49	1.48	1.48
	R(C6-C7)	1.49	1.49	1.48	1.48
	R(C10-C11)	1.49	1.49	1.48	1.48
	R(C13-C14)	1.49	1.49	1.48	1.48
	θ(C2-C3-C4)	122.9	121.6	122.7	123.4
	θ(C6-C7-C8)	122.8	121.2	122.7	123.3
	θ(C9-C10-C11)	118.2	119.1	118.7	118.2
	θ(C9-C13-C14)	118.3	119.6	118.7	118.3
	θ(C1-C2-C3-C4)	53.5	53.6	48.5	45.1
	θ(C5-C6-C7-C8)	54.5	57.5	48.7	45.2
	θ(C9-C10-C11-C12)	50.2	51.5	44.7	41.9
	θ(C9-C13-C14-C15)	51.1	55.5	44.9	42.1
2	R(C2-C3)	1.49	1.48	1.47	1.48
	R(C6-C7)	1.49	1.48	1.47	1.48
	R(C10-C11)	1.49	1.48	1.47	1.48
	R(C13-C14)	1.49	1.48	1.47	1.48
	θ(C2-C3-C4)	122.8	123.5	122.7	123.2
	θ(C6-C7-C8)	122.8	122.4	122.8	123.3
	θ(C9-C10-C11)	118.3	118.0	118.8	118.3
	θ(C9-C13-C14)	118.3	118.4	118.7	118.2
	θ(C1-C2-C3-C4)	55.1	45.8	47.0	46.3
	θ(C5-C6-C7-C8)	55.8	65.9	47.0	45.8
	θ(C9-C10-C11-C12)	51.6	39.3	43.1	43.1
	θ(C9-C13-C14-C15)	52.4	64.8	42.8	42.8
3	R(C2-C3)	1.49	1.49	1.47	1.48
	R(C6-C7)	1.49	1.50	1.47	1.48
	R(C10-C11)	1.49	1.49	1.47	1.48
	R(C13-C14)	1.49	1.50	1.47	1.48
	θ(C2-C3-C4)	122.9	122.1	122.9	123.5
	θ(C6-C7-C8)	122.9	123.9	122.9	123.5
	θ(C9-C10-C11)	118.2	118.8	118.6	118.1
	θ(C9-C13-C14)	118.2	117.7	118.6	118.1
	θ(C1-C2-C3-C4)	54.9	52.2	47.1	44.4
	θ(C5-C6-C7-C8)	54.9	43.3	47.1	44.4
	θ(C9-C10-C11-C12)	51.3	49.9	42.9	41.7
	θ(C9-C13-C14-C15)	51.3	38.2	42.9	41.7

Table S1. The selected optimized bond lengths, bond angles and dihedral angles of molecules 1 to 3 in the neutral and ionic states, together with experimental values¹ (the unit of bond lengths is in angstroms, and the bond angles and dihedral angles are in degrees).

Molecule	Bond Parameters	Neutral	Expt. ¹	Cationic	Anionic
4	R(C2-C3)	1.49	1.49	1.48	1.48
	R(C6-C7)	1.49	1.50	1.48	1.48
	R(C10-C11)	1.49	1.49	1.48	1.48
	R(C13-C14)	1.49	1.50	1.48	1.48
	θ(C2-C3-C4)	122.8	122.6	122.7	123.2
	θ(C6-C7-C8)	122.8	123.3	122.7	123.2
	θ(C9-C10-C11)	118.3	119.0	118.7	118.3
	θ(C9-C13-C14)	118.3	118.0	118.7	118.3
	θ(C1-C2-C3-C4)	55.7	45.6	48.8	46.5
	θ(C5-C6-C7-C8)	55.8	45.2	49.0	46.5
	θ(C9-C10-C11-C12)	52.3	39.4	45.0	43.1
	θ(C9-C13-C14-C15)	52.4	41.7	45.1	43.2
5	R(C2-C3)	1.49	1.49	1.48	1.48
	R(C6-C7)	1.49	1.49	1.48	1.48
	R(C10-C11)	1.49	1.49	1.48	1.48
	R(C13-C14)	1.49	1.50	1.48	1.48
	θ(C2-C3-C4)	122.7	120.8	122.7	123.5
	θ(C6-C7-C8)	122.8	120.6	122.8	123.6
	θ(C9-C10-C11)	118.0	119.6	118.2	117.7
	θ(C9-C13-C14)	117.9	119.5	118.2	117.6
	θ(C1-C2-C3-C4)	59.0	51.8	52.6	46.5
	θ(C5-C6-C7-C8)	57.2	54.7	51.5	45.9
	θ(C9-C10-C11-C12)	57.2	54.1	51.2	46.2
	θ(C9-C13-C14-C15)	55.3	51.4	50.2	45.6
6	R(C2-C3)	1.47	1.48	1.46	1.46
	R(C6-C7)	1.48	1.49	1.46	1.46
	R(C10-C11)	1.47	1.48	1.46	1.46
	R(C13-C14)	1.48	1.49	1.46	1.46
	θ(C2-C3-C4)	122.3	121.3	122.1	122.7
	θ(C6-C7-C8)	123.7	122.7	124.0	124.4
	θ(C9-C10-C11)	118.8	119.1	119.4	118.8
	θ(C9-C13-C14)	117.3	117.6	117.4	117.0
	θ(C1-C2-C3-C4)	48.3	55.4	40.2	39.0
	θ(S5-C6-C7-C8)	55.3	60.5	42.6	45.5
	θ(C9-C10-C11-S12)	44.9	53.6	34.7	36.3
	θ(C9-C13-C14-C15)	47.5	55.9	35.0	36.9

Table S2. The selected optimized bond lengths, bond angles and dihedral angles of molecules 4 to 6 in the neutral and ionic states, together with experimental values¹ (the unit of bond lengths is in angstroms, and the bond angles and dihedral angles are in degrees).

Molecule	Pathway	Distance (Å)	V _{hole} (meV)	V _{electron} (meV)
1	1, 2, 3, 4	9.64	3.3	3.7
	5, 6, 7, 8	13.76	1.2	0.7
	9, 10, 11, 12	13.13	0.1	1.3
2	1, 2	7.20	18.6	9.4
	3, 4	14.61	9.2×10 ⁻⁴	3.6×10 ⁻⁴
	5, 6, 7, 8	10.47	8.2	3.0
	9, 10	19.36	0.04	0.04
	11, 12, 13, 14	16.46	0.09	0.02
3	1, 2	6.99	3.9	9.7
	3, 4, 5, 6	8.89	4.7	0.2
	7, 8	13.30	1.2	2.0
	9, 10, 11, 12	15.34	4.7	0.7
	13, 14	17.63	0.2	0.6
	15, 16	18.97	2.6	0.7
4	1, 2	3.91	18.7	27.9
	3, 4	12.56	0.2	0.3
	5,6	12.56	1.7×10-3	0.01
	7, 8	11.93	1.3	0.1
	9, 10, 11, 12	15.31	0.3	0.2
	13, 14, 15, 16	15.26	0.2	0.06
5	1, 2	4.80	9.9	6.3
	3, 4	15.13	0.05	0.2
	5,6	14.35	0.03	3.9×10 ⁻⁴
	7, 8, 9, 10	16.38	0.05	0.07
	11, 12, 13, 14	16.22	0.02	0.04
6	1, 2, 3, 4	6.93	18.2	3.0
	5, 6	10.99	5.9	3.5
	7, 8, 9, 10	13.38	0.3	2.0
	11, 12, 13, 14	17.08	1.3×10 ⁻³	6.8×10 ⁻⁴
	15, 16	13.98	2.2	2.8
	17, 18	13.69	5.8	4.1

Table S3. The transfer integrals of hole (V_{hole}) and electron ($V_{electron}$) (absolute value) for different hopping pathways of molecules 1 to 6 based on B3LYP/6-31G(d, p) level.

Molecule	$\mu_{h,ave.}$ (cm ² V ⁻¹ s ⁻¹)	$\mu_{e,ave.}$ (cm ² V ⁻¹ s ⁻¹)
1	2.8×10 ⁻³	1.4×10 ⁻³
2	3.9×10 ⁻³	3.6×10 ⁻⁴
3	0.01	1.2×10 ⁻⁴
4	0.01	0.01
5	4.6×10 ⁻³	3.2×10^{-4}
6	0.02	2.9×10 ⁻³

Table S4. The calculated average mobilities of hole $(\mu_{h,ave.})$ and electron $(\mu_{e,ave.})$ of molecules 1 to 6 based on B3LYP/6-31G (d, p) level.

Table S5 Intermolecular interaction energies for the most prominent dimers of molecules 3, 4 and 6.

Dimers	Interaction energies (kcal/mol)
Dimer 1 of molecule 3	-31.75
Dimer 1 of molecule 4	-36.81
Dimer 1 of molecule 6	-24.74

Table S6. The reorganization energies of hole (λ^+) and electron (λ^-) using adiabatic potential energy surfaces (APES) approach, the HOMO, LUMO energies, as well as the vertical and adiabatic ionization potentials (IP_V, IP_A) and electron affinities (EA_V, EA_A) of molecule 6 at B3LYP-D3/6-31G (d, p) level: All the data are in unit of eV.

λ^+	λ-	НОМО	LUMO	IPv	IPA	EA _V	EA _A
0.285	0.266	-5.05	-2.02	6.14	6.00	-0.89	-1.02

Table S7 The transfer integrals of hole (V_{hole}) and electron $(V_{electron})$ (absolute value) for different hopping pathways and charge mobilities of hole and electron for molecule 6 based on B3LYP-D3/6-31G(d, p) level.

Molecule	Pathway	Distance (Å)	V _{hole} (meV)	V _{electron} (meV)
6	1, 2, 3, 4	6.93	18.4	3.0
	5,6	10.99	6.0	3.5
	7, 8, 9, 10	13.38	0.3	2.0
	11, 12, 13, 14	17.08	1.3×10 ⁻³	6.9×10 ⁻⁴
	15, 16	13.98	2.2	2.9
	17, 18	13.69	5.9	4.2
μ (cm ² V ⁻¹ s ⁻¹)			0.02	3.2×10 ⁻³

References

T. H. El-Assaad, M. Auer, R. Castañeda, K. M. Hallal, F. M. Jradi, L. Mosca, R. S. Khnayzer, D. Patra, T. V. Timofeeva, J.-L. Brédas, E. J. W. List-Kratochvil, B. Wex, and B. R. Kaafarani, *J. Mater. Chem. C*, 2016, 4, 3041–3058.