Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

Supporting Information

Restriction of rotational relaxation of the butadiyne-bridged porphyrin dimer in ultrathin films

Alexander V. Shokurov,^{a*} Ivan N. Meshkov,^a Véronique Bulach,^b Yulia G. Gorbunova,^{a,c} Mir Wais Hosseini,^b Aslan Yu. Tsivadze,^{a,c} Vladimir V. Arslanov^a and Sofia L. Selektor^a

^a Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky pr. 31-4, Moscow, 119071 Russia

^b Molecular Tectonics Laboratory, UMR UDS-CNRS, 7140 & icFRC, Université de Strasbourg, F-67000, Strasbourg, France

^cKurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninsky pr. 31, Moscow, 119991 Russia

email: <u>shokurov@phyche.ac.ru</u>

Scheme S1 The proposed structures of the **D**-DABCO ladder-like and branched-like packings in the LBF forming from the solution of D in the presence of 45 equiv DABCO.

Figure S1 Comparison of UV-Vis spectra in CHCl₃ of the following **D** dimer solutions ($c = 1.6 \times 10^{-6}$ M) in chloroform: (1) 1%vol of dioxane, (2) 1%vol of AMP, (3) 2 equiv of DABCO, (4) 45 equiv of DABCO, and (1'-4') their respective emission spectra upon excitation at $\lambda = 450$ nm (divided by absorbance at the same wavelength).

Figure S2. UV-Vis absorbance spectra of cast films of (1) **D**-2DABCO and (2) **D**-45DABCO, (3) **D**-AMP, and (1'-3') their respective emission spectra upon excitation at $\lambda = 450$ nm.

Figure S3. Compression isotherms of **D**-AMP monolayers formed from solutions containing (1) 1% vol, (2) 5% vol, and (3) 10% vol of AMP.