## Supplementary information for:

## Niobium uptake by [P<sub>8</sub>W<sub>48</sub>O<sub>184</sub>]<sup>40-</sup> macrocyclic polyanion

Alexandra A. Shmakova,<sup>[1]</sup> Victoria V. Volchek,<sup>[1]</sup> Vadim Yanshole<sup>[2,3]</sup>, Nikolay B. Kompankov,<sup>[1]</sup> Nicolas P. Martin,<sup>[4]</sup> May Nyman, <sup>[4]</sup> Pavel A. Abramov,<sup>[1,3]</sup> Maxim N. Sokolov<sup>\*[1,3]</sup>



Fig. S1. Crystal packing of 1.

















c)





Fig. S2. HPLC-UV (left) and HPLC-ICP-AES (right) chromatograms of A(a-e).

| Compound | Reference | Peak No1  | Peak No 2 |
|----------|-----------|-----------|-----------|
|          |           | Time, min | Time, min |
| A(a)     | Fig. S2 a | 6,733     | 7,103     |
| A(b)     | Fig. S2 b | 6,732     | 7,061     |
| A(c)     | Fig. S2 c | 6,678     | 7,184     |
| A(d)     | Fig. S2 d | 6,718     | 7,033     |
| A(e)     | Fig. S2 e | 6,678     | 7,198     |
| B(a)     | Fig. 4 a  | 6,496     | 6,779     |
| B(b)     | Fig. 4 b  | 6,576     | 6,810     |
| B(c)     | Fig. 4 c  | 6,980     | 7,263     |
| B(d)     | Fig. 4 d  | 6,898     | 7,254     |

Table S1. Retention times for peaks observed by HPLC-ICP-AES for A and B.



Fig. S3. <sup>31</sup>P NMR spectra for  $K^+/Li^+$  set of Nb functionalized complexes.



Fig. S4. <sup>31</sup>P NMR spectra for  $NH_4^+/Li^+$  set of Nb functionalized complexes.



Fig. S5. Typical  $^{13}C$  NMR spectrum for Nb functionalized  $\{P_8W_{48}\}$  anions in aqueous solution.



Fig. S6. Typical <sup>13</sup>C MAS NMR spectrum for Nb functionalized  $\{P_8W_{48}\}$  anions in solid state.











Fig. S9.

| M/z    | Assignment                                                                          |
|--------|-------------------------------------------------------------------------------------|
| 1362.2 | $(P_8W_{48}O_{184})(NbO(C_2O_4)(H_2O))^{39-+} 30H^+$                                |
| 1373.7 | $(P_8W_{48}O_{184})(NbO(C_2O_4)(H_2O))^{39-}+22H^++3Li^++5NH_4^+$                   |
| 1377.5 | $(P_8W_{48}O_{184})(NbO(C_2O_4)(H_2O))^{39-} + 20H^+ + 3Li^+ + 7NH_4^+$             |
| 1381.3 | $(P_8W_{48}O_{184})(NbO(C_2O_4)(H_2O))^{39-} + 18H^+ + 3Li^+ + 9NH_4^+$             |
| 1386.2 | $(P_8W_{48}O_{184})(NbO(C_2O_4)(H_2O))_2^{38-}+29H^+$                               |
| 1395.7 | $(P_8W_{48}O_{184})(NbO(C_2O_4)(H_2O))_2^{38-}+23H^++3Li^++4NH_4^+$                 |
| 1409.9 | $(P_8W_{48}O_{184})(NbO(C_2O_4)(H_2O))_3^{37-+} 28H^+$                              |
| 1425.0 | $(P_8W_{48}O_{184})(NbO(C_2O_4)(H_2O))_3^{37-+} 28H^+ + 3Li^+ + 7NH_4^+$            |
| 1439.4 | $(P_8W_{48}O_{184})(NbO(C_2O_4)(H_2O))_4^{36-}+22H^++3Li^++2NH_4^+$                 |
| 1454.5 | $(P_8W_{48}O_{184})(NbO(C_2O_4)(H_2O))_4^{36-} + 14H^+ + 3Li^+ + 10NH_4^+$          |
| 1532.7 | $(P_8W_{48}O_{184})(NbO(C_2O_4)(H_2O))^{39-} + 31H^+$                               |
| 1535.0 | $(P_8W_{48}O_{184})(NbO(C_2O_4)(H_2O))^{39-} + 28H^+ + 3Li^+$                       |
| 1541.2 | $(P_8W_{48}O_{184})(NbO(C_2O_4)(H_2O))^{39-} + 25H^+ + 3Li^+ + 3NH_4^+$             |
| 1547.9 | $(P_8W_{48}O_{184})(NbO(C_2O_4)(H_2O))^{39-} + 23H^+ + 3Li^+ + 6NH_4^+$             |
| 1553.6 | $(P_8W_{48}O_{184})(NbO(C_2O_4)(H_2O))^{39-} + 22H^+ + 2Li^+ + 9NH_4^+$             |
| 1559.4 | $(P_8W_{48}O_{184})(NbO(C_2O_4)(H_2O))_2^{38-} + 30H^+$                             |
| 1561.7 | $(P_8W_{48}O_{184})(NbO(C_2O_4)(H_2O))_2^{38-} + 27H^+ + 3Li^+$                     |
| 1570.2 | $(P_8W_{48}O_{184})(NbO(C_2O_4)(H_2O))_2^{38-} + 23H^+ + 3Li^+ + 4NH_4^+$           |
| 1576.6 | $(P_8W_{48}O_{184})(NbO(C_2O_4)(H_2O))_2^{38-} + 20H^+ + 3Li^+ + 7NH_4^+$           |
| 1586.3 | $(P_8W_{48}O_{184})(NbO(C_2O_4)(H_2O))_3^{37-} + 29H^+$                             |
| 1594.8 | $(P_8W_{48}O_{184})(NbO(C_2O_4)(H_2O))_3^{37-} + 23H^+ + 3Li^+ + 3NH_4^+$           |
| 1603.3 | $(P_8W_{48}O_{184})(NbO(C_2O_4)(H_2O))_3^{37-} + 19H^+ + 3Li^+ + 7NH_4^+$           |
| 1612.9 | $(P_8W_{48}O_{184})(NbO(C_2O_4)(H_2O))_4^{36-} + 28H^+$                             |
| 1621.5 | $(P_8W_{48}O_{184})(NbO(C_2O_4)(H_2O))_4^{36-} + 22H^+ + 3Li^+ + 3NH_4^+$           |
| 1634.4 | $(P_8W_{48}O_{184})(NbO(C_2O_4)(H_2O))_4^{36-} + 15H^+ + 3Li^+ + 10NH_4^+$          |
| 1751.0 | $(P_8W_{48}O_{184})(NbO(C_2O_4)(H_2O))^{39-}+32H^+$                                 |
| 1764.1 | $(P_8W_{48}O_{184})(NbO(C_2O_4)(H_2O))^{39-}+25H^++3Li^++4NH_4^+$                   |
| 1769.0 | $(P_8W_{48}O_{184})(NbO(C_2O_4)(H_2O))^{39-} + 23H^+ + 3Li^+ + 6NH_4^+$             |
| 1771.4 | $(P_8W_{48}O_{184})(NbO(C_2O_4)(H_2O))^{39-} + 22H^+ + 3Li^+ + 7NH_4^+$             |
| 1773.8 | $(P_8W_{48}O_{184})(NbO(C_2O_4)(H_2O))^{39-} + 21H^+ + 3Li^+ + 8NH_4^+$             |
| 1776.3 | $(P_8W_{48}O_{184})(NbO(C_2O_4)(H_2O))^{39-} + 20H^+ + 3Li^+ + 9NH_4^+$             |
| 1782.5 | $(P_8W_{48}O_{184})(NbO(C_2O_4)(H_2O))_2^{38-} + 31H^+$                             |
| 1784.1 | $(P_8W_{48}O_{184})(NbO(C_2O_4)(H_2O))_2^{38-} + 29H^+ + 2Li^+$                     |
| 1787.4 | $(P_8W_{48}O_{184})(NbO(C_2O_4)(H_2O))_2^{38-} + 27H^+ + 3Li^+ + NH_4^+$            |
| 1792.2 | $(P_8W_{48}O_{184})(NbO(C_2O_4)(H_2O))_2^{38-} + 25H^+ + 3Li^+ + 3NH_4^+$           |
| 1797.1 | $(P_8W_{48}O_{184})(NbO(C_2O_4)(H_2O))_2^{38-} + 23H^+ + 3Li^+ + 5NH_4^+$           |
| 1802.0 | $(P_8W_{48}O_{184})(NbO(C_2O_4)(H_2O))_2^{38-} + 21H^+ + 3Li^+ + 7NH_4^+$           |
| 1813.1 | $(P_8W_{48}O_{184})(NbO(C_2O_4)(H_2O))_3^{37-} + 30H^+$                             |
| 1820.4 | $(P_8W_{48}O_{184})(NbO(C_2O_4)(H_2O))_3^{37-} + 25H^+ + 3Li^+ + 2NH_4^+$           |
| 1825.2 | $(P_8W_{48}O_{184})(NbO(C_2O_4)(H_2O))_3^{37-} + 23H^+ + 3Li^+ + 4NH_4^+$           |
| 1830.0 | $(P_8W_{48}O_{184})(NbO(C_2O_4)(H_2O))_3^{37-} + 21H^+ + 3Li^+ + 6NH_4^+$           |
| 1843.6 | $(P_8W_{48}O_{184})(NbO(C_2O_4)(H_2O))_4^{36-}+29H^+$                               |
| 1853.3 | $(P_8W_{48}\overline{O_{184}})(NbO(C_2O_4)(H_2O))_4^{36-+} 23H^+ + 3Li^+ + 3NH_4^+$ |

| 1860.7 | $(P_8W_{48}O_{184})(NbO(C_2O_4)(H_2O))_4^{36-} + 20H^+ + 3Li^+ + 6NH_4^+$  |
|--------|----------------------------------------------------------------------------|
| 2044.1 | $(P_8W_{48}O_{184})(NbO(C_2O_4)(H_2O))^{39-+} 33H^+$                       |
| 2075.3 | $(P_8W_{48}O_{184})(NbO(C_2O_4)(H_2O))^{39-}+20H^++3Li^++10NH_4^+$         |
| 2079.8 | $(P_8W_{48}O_{184})(NbO(C_2O_4)(H_2O))_2^{38-} + 32H^+$                    |
| 2083.6 | $(P_8W_{48}O_{184})(NbO(C_2O_4)(H_2O))_2^{38-} + 30H^+ + Li^+ + NH_4^+$    |
| 2089.5 | $(P_8W_{48}O_{184})(NbO(C_2O_4)(H_2O))^{39-+} 15H^+ + 3Li^+ + 15NH_4^+$    |
| 2096.8 | $(P_8W_{48}O_{184})(NbO(C_2O_4)(H_2O))_2^{38-} + 24H^+ + 3Li^+ + 5NH_4^+$  |
| 2103.7 | $(P_8W_{48}O_{184})(NbO(C_2O_4)(H_2O))^{39-}+10H^++3Li^++20NH_4^+$         |
| 2115.4 | $(P_8W_{48}O_{184})(NbO(C_2O_4)(H_2O))_3^{37-} + 31H^+$                    |
| 2126.8 | $(P_8W_{48}O_{184})(NbO(C_2O_4)(H_2O))_3^{37-} + 25H^+ + 3Li^+ + 3NH_4^+$  |
| 2138.4 | $(P_8W_{48}O_{184})(NbO(C_2O_4)(H_2O))_3^{37-} + 22H^+ + 3Li^+ + 7NH_4^+$  |
| 2151.0 | $(P_8W_{48}O_{184})(NbO(C_2O_4)(H_2O))_4^{36-}+30H^+$                      |
| 2161.0 | $(P_8W_{48}O_{184})(NbO(C_2O_4)(H_2O))_3^{37-} + 13H^+ + 3Li^+ + 15NH_4^+$ |
| 2161.1 | $(P_8W_{48}O_{184})(NbO(C_2O_4)(H_2O))^{39-}+25H^++3Li^++5NH_4^+$          |
| 2176.9 | $(P_8W_{48}O_{184})(NbO(C_2O_4)(H_2O))_4^{36-} + 20H^+ + 3Li^+ + 8NH_4^+$  |



Fig. S10. Comparison between experimental and calculated values of isotopic patterns for  $\{[P_8W_{48}O_{184}(NbO(C_2O_4)(H_2O))_2 + 29H^+]^{9-}$ 



Fig. S11. Comparison between experimental and calculated values of isotopic patterns for  $\{[P_8W_{48}O_{184}(NbO(C_2O_4)(H_2O)) + 30H^+]^{9-}$ 



Fig. S12. Comparison between experimental and calculated values of isotopic patterns for  $\{[P_8W_{48}O_{184}(NbO(C_2O_4)(H_2O)) + 18H^+ + 3Li^+ + 9NH_4^+]^{9-1}\}$ 



Fig. S13. Comparison between experimental and calculated values of isotopic patterns for  $\{[P_8W_{48}O_{184}(NbO(C_2O_4)(H_2O)) + 20H^+ + 3Li^+ + 7NH_4^+]^{9-1}\}$ 



Fig. S14. Comparison between experimental and calculated values of isotopic patterns for  $\{[P_8W_{48}O_{184}(NbO(C_2O_4)(H_2O)) + 22H^+ + 3Li^+ + 5NH_4^+]^{9-1}\}$ 



Fig. S15. Comparison between experimental and calculated values of isotopic patterns for  $\{[P_8W_{48}O_{184}(NbO(C_2O_4)(H_2O))_2 + 23H^+ + 3Li^+ + 4NH_4^+]^{8-1}\}$ 



Fig. S16. Comparison between experimental and calculated values of isotopic patterns for  $\{[P_8W_{48}O_{184}(NbO(C_2O_4)(H_2O))_3 + 28H^+]^{9-}$ 



Fig. S17. Comparison between experimental and calculated values of isotopic patterns for  $\{[P_8W_{48}O_{184}(NbO(C_2O_4)(H_2O)) + 22H^+ + 2Li^+ + 9NH_4^+]^{6-}\}$ 



 $\{[P_8W_{48}O_{184}(NbO(C_2O_4)(H_2O))_2 + 30H^+]^{8-1}$ 



Fig. S19. Comparison between experimental and calculated values of isotopic patterns for  $\{[P_8W_{48}O_{184}(NbO(C_2O_4)(H_2O)) + 23H^+ + 3Li^+ + 6NH_4^+]^{7-}\}$ 



Fig. S20. Comparison between experimental and calculated values of isotopic patterns for  $\{[P_8W_{48}O_{184}(NbO(C_2O_4)(H_2O))_2 + 27H^+ + 3Li^+]^{8-1}\}$ 



Fig. S21. Comparison between experimental and calculated values of isotopic patterns for  $\{[P_8W_{48}O_{184}(NbO(C_2O_4)(H_2O)) + 25H^+ + 3Li^+ + 3NH_4^+]^{8-}$ 

## Table S3. Experimental details

|                                                                          | 1                                                                                                                                                                                                    |  |
|--------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Chemical formula                                                         | Nb <sub>3.68</sub> O <sub>238</sub> P <sub>8</sub> W <sub>48</sub>                                                                                                                                   |  |
| M <sub>r</sub>                                                           | 13222.47                                                                                                                                                                                             |  |
| Crystal system, space group                                              | Tetragonal, <i>I</i> 4/ <i>m</i>                                                                                                                                                                     |  |
| Temperature (K)                                                          | 130                                                                                                                                                                                                  |  |
| a, c (Å)                                                                 | 25.6122 (5), 22.0939 (5)                                                                                                                                                                             |  |
| $V(\text{\AA}^3)$                                                        | 14493.3 (7)                                                                                                                                                                                          |  |
| Ζ                                                                        | 2                                                                                                                                                                                                    |  |
| Radiation type                                                           | Mo Ka                                                                                                                                                                                                |  |
| μ (mm <sup>-1</sup> )                                                    | 19.24                                                                                                                                                                                                |  |
| Crystal size (mm)                                                        | 0.12 	imes 0.08 	imes 0.05                                                                                                                                                                           |  |
| Diffractometer                                                           | New Xcalibur, AtlasS2                                                                                                                                                                                |  |
| Absorption correction                                                    | Multi-scan<br><i>CrysAlis PRO</i> 1.171.38.41 (Rigaku Oxford Diffraction,<br>2015) Empirical absorption correction using spherical<br>harmonics, implemented in SCALE3 ABSPACK scaling<br>algorithm. |  |
| $T_{\min}, T_{\max}$                                                     | 0.529, 1.000                                                                                                                                                                                         |  |
| No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections | 19190, 6795, 4745                                                                                                                                                                                    |  |
| R <sub>int</sub>                                                         | 0.036                                                                                                                                                                                                |  |
| θ values (°)                                                             | $\theta_{max} = 25.4, \ \theta_{min} = 3.4$                                                                                                                                                          |  |
| $(\sin \theta / \lambda)_{max} (\text{\AA}^{-1})$                        | 0.602                                                                                                                                                                                                |  |
| Range of $h, k, l$                                                       | $-28 \le h \le 30,  -30 \le k \le 29,  -26 \le l \le 21$                                                                                                                                             |  |
| $R[F^2 > 2\sigma(F^2)], wR(F^2), S$                                      | 0.045, 0.116, 1.02                                                                                                                                                                                   |  |
| No. of reflections, parameters, restraints                               | 6795, 386, 0                                                                                                                                                                                         |  |
| H-atom treatment                                                         | H-atom parameters not defined                                                                                                                                                                        |  |
| Weighting scheme                                                         | $w = 1/[s^2(F_o^2) + (0.0458P)^2 + 505.568P]$<br>where $P = (F_o^2 + 2F_c^2)/3$                                                                                                                      |  |
| $\Delta \rho_{\text{max}}, \Delta \rho_{\text{min}} (e \text{ Å}^{-3})$  | 1.46, -1.51                                                                                                                                                                                          |  |

Computer programs: *CrysAlis PRO* 1.171.38.41 (Rigaku OD, 2015), *SHELXS2014* (Sheldrick, 2014), *SHELXL2014* (Sheldrick, 2014), ShelXle (Hübschle, 2011), CIFTAB-2014 (Sheldrick, 2014).



**Fig S22.** Experimental SAXS curves of the compounds B(a) (purple), B(c) (gold) and B(d) (green).



**Fig S23.** Simulated scattering curves of empty  $P_8W_{48}$  cluster (red),  $P_8W_{48}$  incorporating 4 Nb in the pentagonal position (green),  $P_8W_{48}$  incorporating 4 Nb in the common site-(blue) or  $P_8W_{48}$  incorporating 8 Nb in the common site-(purple).



**Fig S24.** Scattering curve of compound B(d) (green dots) and the calculated scattering curve obtained by PDDF (red).



**Fig S25.** Experimental scattering curve of compound **B(d)** (green dots) along the spherical model fit in a dilute system (red line) and the spherical model including a structure factor : center-to-center distance between clusters = 24.8 Å, and number of nearest neighbors to a cluster = 0.47 (black line).



**Fig S26.** The PDDFs (pair distance distribution function) for empty  $P_8W_{48}$  cluster (red),  $P_8W_{48}$  incorporating 4 Nb in the pentagonal position (green),  $P_8W_{48}$  incorporating 4 Nb in the common site (blue) or  $P_8W_{48}$  incorporating 8 Nb in the common site (purple).

| Compound | R <sub>g</sub> (Guinier) Å | Diameter (Å) |
|----------|----------------------------|--------------|
| B(a)     | 8.41                       | 22.53        |
| B(c)     | 8.36                       | 22.48        |
| B(d)     | 8.34                       | 22.00        |
| 1*       |                            | 23.1         |

**Table S4.** Size of species determine by PDDF analysis of the scattering curves.

\* Diameter obtained from the X-ray structure