Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

Hydrazide integrated carbazoles: synthesis, computational, anticancer and molecular docking studies

Kannan Gokula Krishnan^a, Pathinettampadi Ashothai^b, Krishnaraj Padmavathy^a, Wei-Meng Lim^c, Chun-Wai Mai^{c,d}, Punniyakoti V Thanikachalam^c Chennan Ramalingan^a*

^aDepartment of Chemistry, School of Advanced Sciences (SAS), Kalasalingam Academy of Research and Education (Deemed to be University), Krishnankoil - 626 126, Tamilnadu, India

^bDepartment of Chemistry, Lady Doak College, Madurai - 625 002, Tamilnadu, India

^c School of Pharmacy, International Medical University, 126 Jalan Jalil Perkasa 19, 57000, Bukit Jalil, Kuala Lumpur, Malaysia.

^d Center for Cancer and Stem Cell Research, Institute for Research, Development and Innovation (IRDI), International Medical University, 126, Jalan Jalil Perkasa 19, 57000, Bukit Jalil, Kuala Lumpur, Malaysia.

* Corresponding author:ramalinganc@gmail.com; c.ramalingan@klu.ac.in (C. Ramalingan)

SUPPLEMENTARY INFORMATION

Figure S1. ¹H NMR spectrum of hydrazide integrated carbazole **6a**.

Figure S2. ¹H NMR spectrum of hydrazide integrated carbazole **6b**.

Figure S3. ¹H NMR spectrum of hydrazide integrated carbazole 6c.

Figure S4. ¹³C NMR spectrum of hydrazide integrated carbazole 6a.

Figure S5. ¹³C NMR spectrum of hydrazide integrated carbazole 6b.

Figure S6. ¹³C NMR spectrum of hydrazide integrated carbazole 6c.

Hydrazide	6a	Hydrazide 6	íb	Hydrazide 6c		
Bond length	[Å]	Bond length	[Å]	Bond length	[Å]	
C1-C2	1.503	C1-C2	1.503	C1-C2	1.502	
C1-O8	1.220	C1-O8	1.220	C1-O8	1.219	
C1-N9	1.380	C1-N9	1.380	C1-N9	1.382	
C2-C3	1.397	C2-C3	1.397	C2-C3	1.396	
C2-C7	1.397	C2-C7	1.397	C2-C7	1.397	
C3-C4	1.394	C3-C4	1.394	C3-C4	1.393	
C4-N5	1.336	C4-N5	1.336	C4-N5	1.336	
N5-C6	1.337	N5-C6	1.337	N5-C6	1.337	
C6-C7	1.390	C6-C7	1.390	C6-C7	1.390	
N9-N10	1.360	N9-N10	1.360	N9-N10	1.359	
N10-C11	1.282	N10-C11	1.282	N10-C11	1.282	
C11-C16	1.459	C11-C16	1.459	C11-C16	1.460	
N12-C13	1.384	N12-C13	1.383	N12-C13	1.384	
N12-C24	1.393	N12-C24	1.393	N12-C24	1.391	
N12-C25	1.455	N12-C25	1.455	N12-C25	1.456	
C13-C14	1.397	C13-C14	1.397	C13-C14	1.397	
C13-C18	1.424	C13-C18	1.424	C13-C18	1.423	
C14-C15	1.388	C14-C15	1.388	C14-C15	1.387	
C15-C16	1.411	C15-C16	1.411	C15-C16	1.412	
C16-C17	1.402	C16-C17	1.402	C16-C17	1.401	
C17-C18	1.389	C17-C18	1.389	C17-C18	1.389	
C18-C19	1.448	C18-C19	1.448	C18-C19	1.448	
C19-C20	1.397	C19-C20	1.397	C19-C20	1.397	
C19-C24	1.417	C19-C24	1.418	C19-C24	1.417	
C20-C21	1.390	C20-C21	1.390	C20-C21	1.387	
C21-C22	1.403	C21-C22	1.403	C21-C22	1.401	
C22-C23	1.391	C22-C23	1.391	C21-Br50	1.921	
C23-C24	1.396	C23-C24	1.396	C22-C23	1.391	
C25-C26	1.535	C25-C26	1.535	C23-C24	1.395	
C26-C27	1.533	C26-C27	1.533	C25-C26	1.535	
C27-C28	1.531	C27-C28	1.533	C26-C27	1.533	
		C28-C29	1.533	C27-C28	1.531	
		C29-C30	1.531			

 Table S1a.
 Selected bond lengths, bond angles and dihedral angles of hydrazides 6a-c

Bond angle	[°]	Bond angle	[°]	Bond angle	[°]
C2-C1-O8	121.2	C2-C1-O8	121.2	C2-C1-O8	121.4
C2-C1-N9	120.1	C2-C1-N9	120.1	C2-C1-N9	119.9
O8-C1-N9	118.7	O8-C1-N9	118.7	O8-C1-N9	118.7
C1-C2-C3	125.4	C1-C2-C3	125.4	C1-C2-C3	125.2
C1-C2-C7	116.6	C1-C2-C7	116.6	C1-C2-C7	116.8
C3-C2-C7	117.8	C3-C2-C7	117.8	C3-C2-C7	117.9
C2-C3-C4	118.5	C2-C3-C4	118.5	C2-C3-C4	118.5
C3-C4-N5	124.1	C3-C4-N5	124.1	C3-C4-N5	124.0
C4-N5-C6	116.9	C4-N5-C6	116.9	C4-N5-C6	117.0
N5-C6-C7	123.7	N5-C6-C7	123.7	N5-C6-C7	123.7
C2-C7-C6	119.0	C2-C7-C6	119.0	C2-C7-C6	118.9
C1-N9-N10	125.7	C1-N9-N10	125.7	C1-N9-N10	125.5
N9-N10-C11	117.0	N9-N10-C11	117.0	N9-N10-C11	117.1
N10-C11-C16	122.9	N10-C11-C16	122.9	N10-C11-C16	122.7
C13-N12-C24	108.7	C13-N12-C24	108.7	C13-N12-C24	108.6
C13-N12-C25	125.8	C13-N12-C25	125.7	C13-N12-C25	125.8
C24-N12-C25	125.5	C24-N12-C25	125.6	C24-N12-C25	125.6
N12-C13-C14	129.8	N12-C13-C14	129.7	N12-C13-C14	129.7
N12-C13-C18	109.2	N12-C13-C18	109.2	N12-C13-C18	109.2
C14-C13-C18	121.1	C14-C13-C18	121.1	C14-C13-C18	121.1
C13-C14-C15	117.9	C13-C14-C15	117.9	C13-C14-C15	117.8
C14-C15-C16	122.1	C14-C15-C16	122.1	C14-C15-C16	122.1
C11-C16-C15	118.7	C11-C16-C15	118.6	C11-C16-C15	118.7
C11-C16-C17	121.9	C11-C16-C17	121.9	C11-C16-C17	121.9
C15-C16-C17	119.5	C15-C16-C17	119.5	C15-C16-C17	119.5
C16-C17-C18	119.5	C16-C17-C18	119.5	C16-C17-C18	119.4
C13-C18-C17	119.9	C13-C18-C17	119.9	C13-C18-C17	120.0
C13-C18-C19	106.5	C13-C18-C19	106.5	C13-C18-C19	106.4
C17-C18-C19	133.6	C17-C18-C19	133.6	C17-C18-C19	133.6
C18-C19-C20	133.8	C18-C19-C20	133.8	C18-C19-C20	133.3
C18-C19-C24	106.5	C18-C19-C24	106.6	C18-C19-C24	106.6
C20-C19-C24	119.6	C20-C19-C24	119.6	C20-C19-C24	120.1
C19-C20-C21	119.1	C19-C20-C21	119.1	C19-C20-C21	118.1
C20-C21-C22	120.6	C20-C21-C22	120.6	C20-C21-C22	122.0
C21-C22-C23	121.4	C21-C22-C23	121.5	C20-C21-Br50	119.2

C22-C23-C24	117.8	C22-C23-C24	117.8	C22-C21-Br50	118.7
N12-C24-C19	109.1	N12-C24-C19	109.1	C21-C22-C23	120.4
N12-C24-C23	129.4	N12-C24-C23	129.4	C22-C23-C24	118.2
C19-C24-C23	121.5	C19-C24-C23	121.4	N12-C24-C19	109.2
N12-C25-C26	113.8	N12-C25-C26	113.8	N12-C24-C23	129.6
C25-C26-C27	112.5	C25-C26-C27	112.5	C19-C24-C23	121.2
C26-C27-C28	113.0	C26-C27-C28	113.3	N12-C25-C26	113.8
		C27-C28-C29	113.6	C25-C26-C27	112.4
		C28-C29-C30	113.2	C26-C27-C28	113.0
Dihedral angle	[°]	Dihedral angle	[°]	Dihedral angle	[°]
O8-C1-C2-C3	-149.6	O8-C1-C2-C3	149.3	O8-C1-C2-C3	-148.0
O8-C1-C2-C7	25.7	O8-C1-C2-C7	-26.0	O8-C1-C2-C7	27.1
N9-C1-C2-C3	29.8	N9-C1-C2-C3	-30.0	N9-C1-C2-C3	31.1
N9-C1-C2-C7	-154.9	N9-C1-C2-C7	154.7	N9-C1-C2-C7	-153.8
C2-C1-N9-N10	12.0	C2-C1-N9-N10	-12.0	C2-C1-N9-N10	13.2
O8-C1-N9-N10	-168.6	O8-C1-N9-N10	168.6	O8-C1-N9-N10	-167.7
C1-C2-C3-C4	175.8	C1-C2-C3-C4	-175.7	C1-C2-C3-C4	175.5
C7-C2-C3-C4	0.5	C7-C2-C3-C4	-0.5	C7-C2-C3-C4	0.5
C1-C2-C7-C6	-177.2	C1-C2-C7-C6	177.2	C1-C2-C7-C6	-177.0
C3-C2-C7-C6	-1.5	C3-C2-C7-C6	1.5	C3-C2-C7-C6	-1.5
C2-C3-C4-N5	0.8	C2-C3-C4-N5	-0.8	C2-C3-C4-N5	0.9
C3-C4-N5-C6	-1.0	C3-C4-N5-C6	1.0	C3-C4-N5-C6	-1.0
C4-N5-C6-C7	0.0	C4-N5-C6-C7	0.1	C4-N5-C6-C7	-0.1
N5-C6-C7-C2	1.3	N5-C6-C7-C2	-1.3	N5-C6-C7-C2	1.4
C1-N9-N10-C11	174.2	C1-N9-N10-C11	-174.3	C1-N9-N10-C11	174.1
N9-N10-C11-C16	-179.6	N10-C11-C16-C15	176.3	N9-N10-C11-C16	-179.3
N10-C11-C16-C15	-176.6	N10-C11-C16-C17	-3.7	N10-C11-C16-C15	-176.1
N10-C11-C16-C17	3.5	C24-N12-C13-C14	-179.8	N10-C11-C16-C17	4.1
C24-N12-C13-C14	-179.3	C24-N12-C13-C18	0.7	C24-N12-C13-C14	-179.1
C24-N12-C13-C18	0.8	C25-N12-C13-C14	-2.1	C24-N12-C13-C18	0.9
C25-N12-C13-C14	-1.9	C25-N12-C13-C18	178.4	C25-N12-C13-C14	-1.8
C25-N12-C13-C18	178.2	C13-N12-C24-C19	-0.8	C25-N12-C13-C18	178.2
C13-N12-C24-C19	-0.7	C13-N12-C24-C23	179.6	C13-N12-C24-C19	-0.8
C13-N12-C24-C23	179.6	C25-N12-C24-C19	-178.5	C13-N12-C24-C23	179.5
C25-N12-C24-C19	-178.2	C25-N12-C24-C23	1.8	C25-N12-C24-C19	-178.2
C25-N12-C24-C23	2.1	C13-N12-C25-C26	-89.1	C25-N12-C24-C23	2.1

C13-N12-C25-C26	-90.0	C24-N12-C25-C26	88.2	C13-N12-C25-C26	-88.8
C24-N12-C25-C26	87.1	N12-C13-C14-C15	-179.2	C24-N12-C25-C26	88.1
N12-C13-C14-C15	-179.3	C18-C13-C14-C15	0.2	N12-C13-C14-C15	-179.5
C18-C13-C14-C15	0.5	N12-C13-C18-C17	179.3	C18-C13-C14-C15	0.5
N12-C13-C18-C17	179.4	N12-C13-C18-C19	-0.4	N12-C13-C18-C17	179.5
N12-C13-C18-C19	-0.5	C14-C13-C18-C17	-0.2	N12-C13-C18-C19	-0.6
C14-C13-C18-C17	-0.5	C14-C13-C18-C19	-179.9	C14-C13-C18-C17	-0.5
C14-C13-C18-C19	179.6	C13-C14-C15-C16	-0.3	C14-C13-C18-C19	179.4
C13-C14-C15-C16	-0.1	C14-C15-C16-C11	-179.6	C13-C14-C15-C16	0.0
C14-C15-C16-C11	179.8	C14-C15-C16-C17	0.4	C14-C15-C16-C11	179.9
C14-C15-C16-C17	-0.4	C11-C16-C17-C18	179.7	C14-C15-C16-C17	-0.4
C11-C16-C17-C18	-179.7	C15-C16-C17-C18	-0.3	C11-C16-C17-C18	-179.9
C15-C16-C17-C18	0.4	C16-C17-C18-C13	0.2	C15-C16-C17-C18	0.4
C16-C17-C18-C13	0.0	C16-C17-C18-C19	179.9	C16-C17-C18-C13	0.1
C16-C17-C18-C19	179.9	C13-C18-C19-C20	179.8	C16-C17-C18-C19	-179.8
C13-C18-C19-C20	179.9	C13-C18-C19-C24	-0.1	C13-C18-C19-C20	180.0
C13-C18-C19-C24	0.1	C17-C18-C19-C20	0.1	C13-C18-C19-C24	0.1
C17-C18-C19-C20	-0.1	C17-C18-C19-C24	-179.8	C17-C18-C19-C20	-0.1
C17-C18-C19-C24	-179.8	C18-C19-C20-C21	-180.0	C17-C18-C19-C24	-180.0
C18-C19-C20-C21	-179.8	C24-C19-C20-C21	-0.2	C18-C19-C20-C21	-180.0
C24-C19-C20-C21	-0.1	C18-C19-C24-N12	0.5	C24-C19-C20-C21	-0.1
C18-C19-C24-N12	0.4	C18-C19-C24-C23	-179.8	C18-C19-C24-N12	0.4
C18-C19-C24-C23	-179.9	C20-C19-C24-N12	-179.4	C18-C19-C24-C23	-179.8
C20-C19-C24-N12	-179.4	C20-C19-C24-C23	0.3	C20-C19-C24-N12	-179.5
C20-C19-C24-C23	0.3	C19-C20-C21-C22	0.0	C20-C19-C24-C23	0.3
C19-C20-C21-C22	0.0	C20-C21-C22-C23	0.0	C19-C20-C21-C22	0.0
C20-C21-C22-C23	0.0	C21-C22-C23-C24	0.2	C19-C20-C21-Br50	-179.9
C21-C22-C23-C24	0.2	C22-C23-C24-N12	179.3	C20-C21-C22-C23	0.0
C22-C23-C24-N12	179.3	C22-C23-C24-C19	-0.3	Br50-C21-C22-C23	179.8
C22-C23-C24-C19	-0.3	N12-C25-C26-C27	-179.5	C21-C22-C23-C24	0.2
N12-C25-C26-C27	-179.7	C25-C26-C27-C28	180.0	C22-C23-C24-N12	179.4
C25-C26-C27-C28	179.6	C26-C27-C28-C29	-179.7	C22-C23-C24-C19	-0.3
		C27-C28-C29-C30	179.9	C25-C26-C27-C28	179.9

 Table S1b. Cartesian coordinates of atoms obtained from geometry optimization of

 hydrazide integrated carbazole 6a-c.

	6	a		6b				6с				
E =	-1184.22	2657168	a.u.	E =	= -1262.8	7510908	a.u.	E =	-3757.7	6795231	a.u.	
Atom	Х	Y	Ζ	Atom	Х	Y	Ζ	Atom	Х	Y	Ζ	
С	-5.140	-1.684	0.168	С	-5.740	-1.925	-0.005	С	-5.529	-1.998	0.270	
С	-5.310	-0.191	0.166	С	-5.961	-0.514	0.461	С	-5.556	-0.501	0.150	
С	-4.570	0.707	-0.607	С	-5.083	0.222	1.259	С	-4.769	0.250	-0.725	
С	-4.909	2.058	-0.563	С	-5.474	1.491	1.683	С	-4.974	1.627	-0.789	
Ν	-5.893	2.559	0.188	Ν	-6.638	2.062	1.360	Ν	-5.871	2.284	-0.048	
С	-6.599	1.690	0.920	С	-7.473	1.347	0.599	С	-6.621	1.554	0.784	
С	-6.359	0.320	0.933	С	-7.192	0.065	0.141	С	-6.515	0.174	0.909	
Ο	-6.081	-2.427	0.391	0	-6.677	-2.683	-0.196	Ο	-6.530	-2.630	0.564	
Ν	-3.905	-2.241	-0.097	Ν	-4.458	-2.392	-0.213	Ν	-4.357	-2.688	0.028	
Ν	-2.725	-1.566	-0.147	Ν	-3.333	-1.628	-0.258	Ν	-3.121	-2.132	-0.074	
С	-1.660	-2.265	-0.295	С	-2.240	-2.220	-0.573	С	-2.126	-2.933	-0.186	
Ν	3.436	0.081	-0.544	Ν	2.646	0.525	-0.933	Ν	3.159	-1.075	-0.594	
С	2.268	-0.659	-0.504	С	1.541	-0.305	-0.872	С	1.929	-1.702	-0.510	
С	2.075	-2.033	-0.669	С	1.453	-1.688	-1.047	С	1.610	-3.059	-0.604	
С	0.778	-2.520	-0.593	С	0.200	-2.276	-0.947	С	0.276	-3.420	-0.493	
С	-0.327	-1.674	-0.355	С	-0.961	-1.523	-0.671	С	-0.746	-2.468	-0.290	
С	-0.119	-0.299	-0.182	С	-0.859	-0.135	-0.498	С	-0.413	-1.111	-0.188	
С	1.170	0.213	-0.254	С	0.384	0.477	-0.594	С	0.917	-0.724	-0.296	
С	1.724	1.545	-0.128	С	0.834	1.849	-0.476	С	1.593	0.555	-0.236	
С	1.170	2.804	0.112	С	0.187	3.060	-0.221	С	1.149	1.866	-0.050	
С	2.008	3.911	0.171	С	0.936	4.229	-0.173	С	2.094	2.882	-0.049	
С	3.392	3.770	-0.006	С	2.323	4.198	-0.377	С	3.459	2.626	-0.227	
С	3.970	2.527	-0.246	С	2.993	3.005	-0.634	С	3.913	1.324	-0.412	
С	3.124	1.419	-0.308	С	2.236	1.833	-0.684	С	2.973	0.293	-0.419	
С	4.775	-0.452	-0.740	С	4.018	0.098	-1.164	С	4.443	-1.738	-0.773	
С	5.488	-0.830	0.565	С	4.782	-0.252	0.121	С	5.120	-2.144	0.543	
С	6.898	-1.381	0.326	С	6.225	-0.685	-0.155	С	6.467	-2.838	0.319	
С	7.623	-1.752	1.622	С	7.007	-1.038	1.115	С	7.155	-3.246	1.625	
Н	-3.754	0.371	-1.229	С	8.454	-1.466	0.847	Н	-4.019	-0.216	-1.346	
Н	-4.355	2.774	-1.164	С	9.226	-1.815	2.122	Н	-4.383	2.232	-1.471	
Н	-7.400	2.110	1.521	Н	-4.122	-0.174	1.548	Н	-7.349	2.102	1.376	
Н	-6.973	-0.352	1.518	Н	-4.814	2.079	2.314	Н	-7.164	-0.382	1.573	

Η	-3.908	-3.261	-0.080	Н	-8.418	1.822	0.349	Η	-4.454	-3.699	0.120
Н	-1.716	-3.358	-0.382	Н	-7.909	-0.492	-0.448	Η	-2.281	-4.019	-0.206
Н	2.903	-2.707	-0.847	Н	-4.424	-3.365	-0.517	Н	2.372	-3.814	-0.755
Н	0.607	-3.584	-0.720	Н	-2.228	-3.296	-0.788	Η	0.008	-4.470	-0.564
Н	-0.967	0.345	0.014	Н	2.327	-2.293	-1.252	Н	-1.197	-0.383	-0.018
Н	0.100	2.917	0.251	Н	0.110	-3.349	-1.079	Η	0.099	2.088	0.092
Н	1.591	4.894	0.359	Н	-1.754	0.442	-0.298	Н	4.164	3.447	-0.217
Н	4.028	4.647	0.047	Н	-0.885	3.088	-0.062	Н	4.971	1.135	-0.542
Н	5.041	2.434	-0.375	Н	0.447	5.176	0.025	Н	4.282	-2.617	-1.404
Н	4.699	-1.323	-1.397	Н	2.889	5.121	-0.333	Н	5.091	-1.067	-1.343
Η	5.358	0.294	-1.289	Н	4.065	2.997	-0.784	Н	5.260	-1.251	1.163
Н	5.540	0.053	1.212	Н	4.532	0.897	-1.706	Н	4.448	-2.806	1.101
Η	4.884	-1.571	1.100	Н	3.994	-0.763	-1.838	Н	6.319	-3.726	-0.308
Н	6.839	-2.263	-0.324	Н	4.246	-1.049	0.647	Н	7.129	-2.172	-0.249
Η	7.490	-0.639	-0.223	Н	4.775	0.618	0.786	Η	8.112	-3.737	1.432
Η	8.625	-2.140	1.420	Н	6.751	0.116	-0.691	Н	7.349	-2.376	2.258
Η	7.729	-0.882	2.278	Н	6.225	-1.551	-0.830	Н	6.534	-3.941	2.198
Η	7.075	-2.519	2.177	Н	6.485	-1.842	1.650	Br	1.520	4.697	0.208
				Н	7.005	-0.174	1.792				
				Н	8.975	-0.662	0.313				
				Н	8.455	-2.330	0.171				
				Н	10.253	-2.114	1.897				
				Η	8.750	-2.641	2.659				
				Н	9.271	-0.960	2.804				

Mode Expt.		Calc. Freq.			Without and Assignment with DED (0()		
Mode	Freq.	Unscaled	Scaled	$I_{\rm IR}$	Vibrational Assignment with PED (%)		
1		12	12	0.15	τC15C16C11N10 (47); τC1N9N10C11 (28)		
2		21	20	2.11	βC16C11N10 (14); βC11N10N9 (11); τC13N12C25C26 (17); βC1N9N10 (10)		
3		24	23	1.78	βC1N9N10 (11); τC2C1N9N10 (10)		
4		30	29	0.81	τC13N12C25C26 (14); τC2C1N9N10 (12); ΓC25C13C24N12 (13)		
5		41	40	1.03	ΓC25C13C24N12 (24); τC7C2C1N9 (27)		
6		59	57	1.9	ΓC25C13C24N12 (22); τC7C2C1N9 (22)		
7		74	72	0.62	τC27C26C25N12 (59); τC25C26C27C28 (11)		
8		88	85	3.11	τC2C1N9N10 (12)		
9		105	102	5.65	τC7C2C1N9 (15)		
10		113	110	2.6	тС1N9N10C11 (17); ГС18C19C24C20 (20)		
11		115	112	0.36	τC27C26C25N12 (10); τC25C26C27C28 (53)		
12		158	153	3.49	ГС1С2С7С3 (25); тС7С4С6N5 (12)		
13		163	158	3.42	τC19C24C22C23 (24)		
14		179	174	6.2	βC25C26C27 (23); βC26C27C28 (12)		
15		197	191	2.31	βC1C2C7 (16)		
16		220	213	10.08	βC11C16C17 (10); τC13C18C16C17 (20)		
17		233	226	8.81	τC2C7N5C6 (16); τC4C3N5C6 (30)		
18		245	238	5.23	τH49C28C27C26 (15); τH50C28C27C26 (17); τH48C28C27C26 (32)		
19		252	244	11.5	βC1C2C7 (27); τC1N9N10C11 (10); τC2C1N9N10 (15)		
20		278	270	7.55	τC19C24C22C23 (10); τC16C11N10N9 (10)		
21		291	282	5.6	τC16C11N10N9 (15); βC24N12C25 (11); τC22C21C23C24 (11)		
22		301	292	7.38	βC24N12C25 (27)		
23		336	326	2.58	τC15C14C16C17 (10); βC26C27C28 (11)		
24		367	356	9.55	βN9C1O8 (15); βC4N5C6 (12); νC1C2 (23)		
25		391	379	2.23	τH29C3C4N5 (10); τH32C7C6N5 (10); τC7C4C6N5 (16)		
26		398	386	5.3	βC26C27C28 (18); τC17C18C19C24 (17)		

 Table S2. Experimental and calculated vibrational frequencies along with their proposed assignment of hydrazide 6a

27		413	401	11.42	βC2C1N9 (11); βC16C17C18 (12); τC7C4C6N5 (11)
28		434	421	8.19	ΓC18C19C24C20 (10); τC13C18C16C17 (17); τC22C21C23C24 (16); τC13C18C14C15 (10)
29	426	440	427	7.22	βC26C25N12 (20); βC26C27C28 (20); τC17C18C19C24 (10)
30		457	443	11.84	τC13C18C14C15 (19)
31		461	447	13.47	τC13C18C14C15 (10)
32		494	479	24.34	βC16C11N10 (10)
33		531	515	17.3	βC17C18C19 (14)
34		578	561	8.33	τC22C21C23C24 (17); τC21C20C22C23 (33); ΓΝ12C19C23C24 (12)
35		591	573	20.46	βN9C1O8 (12)
36		615	597	19.74	τH33N9N10C11 (43)
37		620	601	8.98	тНЗЗN9N10C11 (17); ГС11С15С17С16 (11)
38	611	629	610	19.29	тС15С14С16С17 (13); ГС11С15С17С16 (20)
39		641	622	8.47	τH33N9N10C11 (11); βC16C17C18 (16); βC21C22C23 (12); βC14C15C16 (15)
40		652	632	28	βC14C13C18 (16)
41		678	658	7.49	βC1N9N10 (10); βC7C6N5 (11)
42	680	686	665	4.53	βC3C4N5 (26); βC7C6N5 (13)
43		725	703	29.36	τC2C7N5C6 (21); τC4C3N5C6 (11); ΓO8C2N9C1 (34)
44		740	718	5.55	τH44C26C27C28 (19); τH46C27C26C25 (20); βH44C26C27 (15); βH46C27C28 (12)
45		743	721	16.14	τH39C21C22C23 (10)
46		747	725	19.33	тН39С21С22С23 (10)
47		749	727	4.84	vC13C18 (10)
48		764	741	20.72	ГN12C19C23C24 (24); тН40C22C23C24 (11); тН38C20C21C22 (10)
49	748	773	750	19.47	τC7C4C6N5 (10); τC2C7N5C6 (28); τC4C3N5C6 (13); ΓO8C2N9C1 (15); τH29C3C4N5 (14); τH32C7C6N5 (14)
50		782	759	4.07	ГС19С13С17С18 (19);
51		794	770	4.79	τH46C27C26C25 (10); τH45C26C27C28 (11); τH48C28C27C26 (15)
52		803	779	7.99	βC14C15C16 (11); βC11N10N9 (12); vC1C2 (10)
53	798	812	788	22.31	τC13C18C14C15 (12); τH35C14C15C16 (39); τH36C15C16C11 (31)
54		858	832	1.55	τH41C23C24N12 (42); τH38C20C21C22 (19);
				1	6

тН39С21С22С23 ((17))
	/	

55		864	838	19.96	ГО8С2N9С1 (19); ГС1С2С7С3 (18); тН29С3С4N5 (18)
56	842	880	854	10.72	τH42C25N12C13 (10)
57		900	873	7.74	τH29C3C4N5 (29); τH31C6N5C4 (21); τH32C7C6N5 (38)
58		911	884	6.14	τH49C28C27C26 (16); τH50C28C27C26 (16); νC26C27 (26); νC27C28 (16)
59	891	924	896	5.65	τC13C18C16C17 (11); τH37C17C18C13 (58); τH34C11N10N9 (11)
60		936	908	7.4	τH30C4N5C6 (19); τH31C6N5C4 (11)
61		937	909	10.64	τH35C14C15C16 (23); τH37C17C18C13 (11); νC16C17 (17); τH36C15C16C11 (36)
62		940	912	1.5	τH38C20C21C22 (36); τH39C21C22C23 (10); τH40C22C23C24 (20)
63	931	961	932	2.24	τH48C28C27C26 (10); βH46C27C28 (11); βH44C26C27 (19)
64		969	940	14.18	тH36C15C16C11 (12); тH34C11N10N9 (75)
65		979	950	0.43	τH38C20C21C22 (12); τH39C21C22C23 (34); τH40C22C23C24 (35)
66		993	963	5.07	τH29C3C4N5 (24); τC4C3N5C6 (10); τH30C4N5C6 (35); τH32C7C6N5 (15)
67	975	1005	975	5.88	vC25C26 (49); vC27C28 (30)
68		1007	977	7.66	τH30C4N5C6 (18); τH31C6N5C4 (36); τH32C7C6N5 (14)
69		1013	983	8.11	βC4N5C6 (13); βC3C4N5 (14); βC7C6N5 (16); vN5C4 (15); vN5C6 (17)
70		1031	1000	5.09	vC21C22 (10)
71		1046	1015	9.59	βH38C20C21 (12); vC21C22 (29); βH41C23C24 (12)
72		1056	1024	2.21	vC25C26 (17); vC27C28 (36); vC26C27 (37)
73		1080	1048	12.37	βC22C23C24 (25); βC20C21C22 (11); vN12C25 (22)
74		1094	1061	15.96	βC3C4N5 (19); βC7C6N5 (25); βH32C7C6 (17)
75		1111	1078	1.92	βH29C3C4 (22); βH32C7C6 (15); vC3C4 (23); vC6C7 (16)
76		1128	1094	14.04	τН49С28С27С26 (15); τН50С28С27С26 (15)
77		1131	1097	15.81	vN9N10 (23); vC2C7 (12)
78		1144	1110	17.79	νC20C21 (12); βH39C21C22 (12)
79		1162	1127	41.27	νC26C27 (15); βC25C26C27 (10)
80		1169	1134	33.68	vN9N10 (20)

C14C15 (11); vN9N10 (10); βH36C15C16 ·C14C15 (13)
C22C23 (32); βH39C21C22 (16); C23C24 (12)
C16 (20); βH37C17C18 (10)
C25C26 (13); βH44C26C27 (11)
C4N5 (23); vN5C4 (10); vN5C6 (12); C6N5 (21)
C17C18 (12)
C26C27 (11)
4 (27); vN5C6 (24); vC2C3 (15); vC6C7 vC2C7 (12)
226С27С28 (20); тН45С26С27С28 (24)
C15C16 (14); βH37C17C18 (23); C11N10 (12)
C25C26 (19); βH46C27C28 (27)
C26C27 (33); βH46C27C28 (19)
l (20); vC1C2 (11); βH29C3C4 (14)
СЗС4 (10); βН32С7С6 (10)
C7C6 (11); βH31C6N5 (13)
224 (10)
C25 (19); vN12C13 (16); vN12C24 (14)
C27C26C25 (13); τH47C27C26C25 (25); C25N12C13 (10)
C11N10 (38); βH33N9N10 (22)
C25N12C13 (13); τH43C25N12C13 (18); C25H43 (11)
C13 (11); vN12C24 (10); βH42C25C26
C28H50 (29); βH48C28H49 (28); C28H50 (24)
7 (14); νC3C4 (14); βH30C4N5 (28); C6N5 (23)
C15 (17); νC17C18 (14); βH38C20C21 SH41C23C24 (12)
С26С27С28 (10); тН45С26С27С28 (12)
C27H47 (55); βH44C26H45 (18)
С26H45 (38); βH49C28H50 (13); C25H43 (10)

109		1505	1460	30.83	βH33N9N10 (26)
110	1465	1507	1462	7.53	βH49C28H50 (26); βH42C25H43 (27);
111		1517	1471	14.3	βH42C25H43 (21); βH44C26H45 (22); βH46C27H47 (25)
112		1518	1472	29.89	νC22C23 (10); βH39C21C22 (11)
113		1521	1475	20.77	βH30C4N5 (11); βH31C6N5 (12)
114	1489	1525	1479	20.03	βH33N9N10 (12)
115		1594	1546	22.69	vN5C4 (15); vN5C6 (16); vC2C3 (24); vC2C7 (24)
116	1554	1606	1558	12.65	vC13C14 (25); vC15C16 (10); vC13C18 (17)
117		1617	1568	3.89	vC21C22 (19); vC19C24 (20); vC19C20 (11)
118		1633	1584	24.36	vC6C7 (16); vC2C7 (10); vC3C4 (14);
119		1635	1586	40.49	vC17C18 (13)
120		1657	1607	26.92	vC19C20 (14); vC23C24 (11); vN10C11 (18)
121	1587	1674	1624	14.98	vN10C11 (70)
122	1641	1741	1689	100	vO8C1 (88)
123	2868	3005	3035	18.33	vC27H46 (47); vC27H47 (47)
124	2953	3019	3049	33.57	vC11H34 (100)
125		3022	3052	12.54	vC26H44 (22); vC26H45 (29); vC28H48 (10); vC28H49 (17); vC28H50 (16)
126		3026	3056	23.39	vC26H45 (24); vC28H48 (15); vC26H44 (11); vC28H49 (17); vC28H50 (23)
127		3028	3058	11.42	vC27H46 (36); vC27H47 (42); vC26H44 (14)
128	3070	3044	3074	31.61	vC25H43 (50); vC25H42 (41)
129		3056	3087	9.41	vC26H44 (35); vC26H45 (30); vC25H42 (12)
130		3083	3114	3.08	vC25H42 (26); vC25H43 (22); vC28H49 (22); vC28H50 (22)
131		3088	3119	34.31	vC25H42 (16); vC25H43 (14); vC28H49 (22); vC28H50 (25)
132		3092	3123	27.54	vC28H48 (73); vC28H49 (15); vC28H50 (10)
133		3147	3178	21.87	vC4H30 (85); vC6H31 (13)
134		3152	3184	17.91	vC4H30 (13); vC6H31 (84)
135		3163	3195	12.64	vC14H35 (10); vC15H36 (90)
136		3166	3198	2.78	vC20H38 (20); vC21H39 (30); vC22H40 (41); vC23H41 (10)
137		3174	3206	8.88	vC20H38 (53); vC22H40 (26); vC23H41 (16)
138		3185	3217	19.38	vC20H38 (17); vC21H39 (25); vC23H41 (52)
139	3221	3190	3222	18.61	vC14H35 (86); vC15H36 (10)
140		3193	3225	8.39	vC17H37 (96)

141		3194	3226	16.4	vC21H39 (30); vC22H40 (21); vC23H41 (15)
142		3208	3240	7.9	vC7H32 (98)
143		3231	3263	5.04	vC3H29 (99)
144	3405	3464	3499	10.27	vN9H33 (100)

v - stretching, β - in-plane bending, τ - torsional vibrations, Γ - out of plane bending

	Expt.	Calc. Freq.			
Mode	Freq	Unscaled	Scaled	$I_{\rm IR}$	Vibrational Assignment with PED (%)
1		10	10	0.93	τC15C16C11N10 (44); τC1N9N10C11 (20); ΓC25C13C24N12 (15)
2		17	16	1.72	τC13N12C25C26 (25); τC27C26C25N12 (25)
3		23	22	2.09	βC16C11N10 (14); βC1N9N10 (15); βC11N10N9 (12)
4		25	24	1.33	τC16C11N10N9 (10); ΓC25C13C24N12 (21); τC2C1N9N10 (15)
5		38	37	0.87	ГС25С13С24N12 (18)
6		53	51	0.62	τC27C26C25N12 (29); τC25C26C27C28 (12); τC26C27C28C29 (19)
7		55	53	1.11	τC7C2C1N9 (32)
8		73	71	0.45	τC25C26C27C28 (30); τC26C27C28C29 (16); τC27C28C29C30 (24)
9		87	84	3.48	βC11C16C17 (10); τC1N9N10C11 (13); τC2C1N9N10 (13)
10		102	99	4.07	ΓC25C13C24N12 (10); βC26C27C28 (13); βC25C26C27 (10); βC27C28C29 (12)
11		104	101	4.29	ГС19С13С17С18 (12); ГN12С19С23С24 (10); ГС18С19С24С20 (18)
12		118	114	2.49	ГС18С19С24С20 (12); тС1N9N10С11 (16)
13		134	130	0.38	τC27C26C25N12 (26); τC26C27C28C29 (30)
14		147	143	1.45	τC25C26C27C28 (24); τC27C28C29C30 (29)
15		157	152	4.93	ГС1С2С7С3 (17)
16		168	163	3.54	τC15C16C11N10 (17); τC1N9N10C11 (10); τC17C18C19C24 (12); βC1C2C7 (10)
17		174	169	2.5	τC19C24C22C23 (14)
18		217	210	8.63	βC1C2C7 (19)
19		232	225	9.65	τC7C2C1N9 (13); τC2C1N9N10 (13)
20		236	229	10.5	τC22C21C23C24 (15); τC13C18C14C15 (11)
21		249	242	3.39	τΗ54С30С29С28 (33); τΗ55С30С29С28 (23)
22		251	243	6.71	βC25C26C27 (11); βC28C29C30 (12); τC2C1N9N10 (10)
23		270	262	6.73	βC1C2C7 (14)
24		292	283	9.23	τC16C11N10N9 (22); τC2C1N9N10 (10)
25		297	288	6.44	βC24N12C25 (36)

 Table S3. Experimental and calculated vibrational frequencies along with their proposed

 assignment of hydrazide 6b

26		321	311	3.86	βC27C28C29 (10); τC15C14C16C17 (15)
27		367	356	9.05	νC1C2 (23); βN9C1O8 (15); βC4N5C6 (12)
28		391	379	1.89	τH31C3C4N5 (10); τH34C7C6N5 (10); τC4C3N5C6 (31)
29		403	391	3.15	τC17C18C19C24 (19)
30		412	400	11.34	βC2C1N9 (11); βC16C17C18 (12); τC7C4C6N5 (11)
31		435	422	8.68	ГС18С19С24С20 (13); тС13С18С16С17 (17)
32		436	423	3.97	βC25C26C27 (10); βC27C28C29 (14); βC28C29C30 (36)
33		448	435	9.74	βC26C27C28 (14); βC26C25N12 (14)
34		458	444	7.91	τC13C18C14C15 (20)
35		466	452	12.61	βC26C25N12 (10)
36		495	480	26.15	βC16C11N10 (10)
37	522	532	516	17.24	βC17C18C19 (14)
38		578	561	5.09	τC22C21C23C24 (18); τC21C20C22C23 (33); ΓN12C19C23C24 (12)
39		592	574	22.07	βN9C1O8 (12)
40		614	596	16.93	τH35N9N10C11 (49)
41		625	606	19.96	τΗ35N9N10C11 (19); βC21C22C23 (10)
42	611	629	610	12.58	τC15C14C16C17 (13); ΓC11C15C17C16 (12); τH38C15C16C17 (10)
43		641	622	7.61	βC16C17C18 (17); βC21C22C23 (14); βC14C15C16 (16)
44		655	635	26.67	βC14C13C18 (17)
45		678	658	7.31	βC1N9N10 (10); βC7C6N5 (11)
46	688	686	665	4.32	βC3C4N5 (25); βC7C6N5 (13)
47		725	703	28.93	τC2C7N5C6 (21); τC4C3N5C6 (10); ΓO8C2N9C1 (34)
48		734	712	7.74	τH52C29C28C27 (12); τH50C28C29C30 (18); τH48C27C28C29 (16); βH48C27C28 (10)
49		744	722	18.7	τH41C21C22C23 (12)
50		746	724	7.42	τC7C4C6N5 (16); τC2C7N5C6 (16)
51		749	727	14.91	τH31C3C4N5 (14); τH34C7C6N5 (14)
52		751	728	3.57	τC13C18C16C17 (22); τC22C21C23C24 (13)
53		764	741	20.65	τC19C24C22C23 (11); ΓN12C19C23C24 (24); τH42C22C23C24 (11)
54	750	773	750	18.88	τC7C4C6N5 (10); τC2C7N5C6 (27); τC4C3N5C6 (13); ΓO8C2N9C1 (15)
55		782	759	3.99	ГС19С13С17С18 (19); тН37С14С15С16 (10);

					τ H20C17C18C12 (10)
56		706	772	8 50	сн59С17С18С13 (10) сн54С20С20С28 (11): 8Н48С27С28 (10)
57		790 804	780	6.73	BC14C15C16 (11): BC11N10N0 (12)
58	798	812	788	22.47	τC13C18C14C15 (14); τH37C14C15C16 (42); τH38C15C16C17 (26)
59		858	832	1.31	τH40C20C21C22 (19); τH41C21C22C23 (17); τH43C23C24N12 (41)
60		863	837	20.18	ГО8С2N9С1 (19); ГС1С2С7С3 (18); тН31С3С4N5 (18)
61	846	867	841	5.69	τH32C4N5C6 (18); τH33C6N5C4 (11)
62		899	872	5	τH55C30C29C28 (13); τH56C30C29C28 (15); νC28C29 (30); νC29C30 (17)
63		900	873	7.75	τH31C3C4N5 (28); τH33C6N5C4 (22); τH34C7C6N5 (39)
64	891	919	891	5.76	тH42C22C23C24 (19); тH43C23C24N12 (18)
65		924	896	5.8	τC13C18C16C17 (10); τH39C17C18C13 (54); τH36C11N10N9 (11)
66		936	908	7.55	τH37C14C15C16 (20); τH38C15C16C17 (37); τH39C17C18C13 (15)
67		938	910	10.25	vC16C17 (17)
68		940	912	2.19	тН40С20С21С22 (35); тН41С21С22С23 (10)
69		968	939	14.18	τH36C11N10N9 (76)
70		979	950	0.21	τH40C20C21C22 (12); τH41C21C22C23 (33); τH42C22C23C24 (36); τH43C23C24N12 (10)
71		993	963	4.92	τH31C3C4N5 (23); τC4C3N5C6 (10); τH32C4N5C6 (35); τH34C7C6N5 (15)
72		1001	971	3.89	vC25C26 (26); vC27C28 (29); vC29C30 (25)
73	975	1007	977	7.68	τH32C4N5C6 (18); τH33C6N5C4 (36); τH34C7C6N5 (13)
74		1011	981	3.86	βH48C27C28 (16); βH50C28C29 (10); τH51C28C29C30 (11); βH46C26C27 (14)
75		1013	983	8.01	βC4N5C6 (13); βC3C4N5 (14); βC7C6N5 (16); vN5C4 (15); vN5C6 (16)
76		1031	1000	5.27	vC21C22 (10)
77		1034	1003	6.35	vC25C26 (29); vC26C27 (15)
78		1046	1015	9.36	βH40C20C21 (12); vC21C22 (28); βH43C23C24 (11)
79		1048	1017	2.55	vC26C27 (42); vC29C30 (23)
80		1065	1033	2.93	vC27C28 (35); vC29C30 (13); vC28C29 (28)
81		1080	1048	12.66	βC22C23C24 (24); βC20C21C22 (11); vN12C25 (21)

82	1066	1094	1061	15.77	βC3C4N5 (19); βC7C6N5 (25); βH34C7C6 (17)
83		1111	1078	2.15	βH31C3C4 (22); βH34C7C6 (15); νC3C4 (23); νC6C7 (16)
84		1131	1097	16.38	vN9N10 (23); vC2C7 (12)
85		1136	1102	12.92	τH55C30C29C28 (11); τH56C30C29C28 (12); νC28C29 (12)
86		1145	1111	17.17	νC20C21 (12); βH41C21C22 (12)
87		1162	1127	44.08	βH37C14C15 (11)
88		1170	1135	28.53	vN9N10 (19)
89	1149	1178	1143	12.97	vN9N10 (10); βH37C14C15 (11); βH38C15C16 (21); vC14C15 (12)
90		1182	1147	5.66	βH41C21C22 (15); βH42C22C23 (30); βH43C23C24 (11)
91		1215	1179	27.19	vC11C16 (20); βH39C17C18 (10)
92		1223	1186	25.66	βН31С3С4 (10); βН34С7С6 (11)
93		1244	1207	12.39	βH32C4N5 (23); vN5C4 (10); vN5C6 (12); βH33C6N5 (21)
94	1217	1248	1211	19.94	vC19C24 (11); vC18C19 (10)
95		1259	1221	8.68	βH39C17C18 (16)
96		1260	1222	49.77	τH47C26C27C28 (13); τH48C27C28C29 (11); τH51C28C29C30 (10); τH49C27C28C29 (16)
97		1274	1236	9.3	vN5C4 (27); vN5C6 (24); vC2C3 (15); vC6C7 (10); vC2C7 (12)
98	1247	1290	1251	6.62	βН46С26С27 (13); βН52С29С30 (14)
99		1303	1264	30.39	βH38C15C16 (11); βH39C17C18 (18); βH36C11N10 (11)
100	1280	1325	1285	13.56	βH44C25C26 (19); βH52C29C30 (13)
101		1326	1286	3.2	τН46С26С27С28 (12)
102		1334	1294	7.22	βH48C27C28 (42); βH46C26C27 (11); τH49C27C28C29 (12)
103		1339	1299	12.66	βH52C29C30 (20); βH50C28C29 (23); βH46C26C27 (14)
104	1303	1345	1305	76.32	vN9C1 (20); vC1C2 (11)
105		1354	1313	22.86	βH31C3C4 (14)
106		1358	1317	53.77	βH34C7C6 (10); βH33C6N5 (12)
107	1327	1367	1326	20.1	vC23C24 (10)
108		1376	1335	48.68	vN12C25 (19); vN12C13 (15); vN12C24 (13)
109		1382	1341	3.31	τH53C29C28C27 (16); τH49C27C28C29 (10)
110	1354	1391	1349	39.58	βH36C11N10 (38); βH35N9N10 (22)
111		1405	1363	3.3	τН48С27С28С29 (11); τН49С27С28С29 (14);

					τH50C28C29C30 (16); τH51C28C29C30 (18)
112		1409	1367	15.13	τH44C25N12C13 (14); τH45C25N12C13 (25); τH47C26C27C28 (10); βH44C25H45 (14)
113		1417	1374	21.4	βH44C25C26 (17); vN12C13 (10); vN12C24 (10)
114		1420	1377	6.39	βН54C30H56 (30); βН54C30H55 (31); βН55C30H56 (27)
115	1386	1439	1396	21.81	βH32C4N5 (28); βH33C6N5 (22); νC6C7 (14); νC3C4 (14)
116		1471	1427	20.88	νC14C15 (16); νC17C18 (14); βH43C23C24 (12); βH40C20C21 (10)
117	1436	1487	1442	28.79	βH46C26H47 (12)
118		1489	1444	14.43	βH50C28H51 (52); βH52C29H53 (16); βH48C27H49 (20)
119		1490	1445	19.32	βН48С27Н49 (37); βН52С29Н53 (22)
120		1497	1452	17.24	βH46C26H47 (36); βH52C29H53 (12); βH55C30H56 (12)
121		1503	1458	18.77	βH48C27H49 (11); βH54C30H55 (14); βH55C30H56 (16); βH44C25H45 (22)
122		1504	1459	12.66	βH54C30H56 (43); βH54C30H55 (28); τH54C30C29C28 (14)
123		1506	1461	30.17	βH35N9N10 (25)
124	1465	1511	1466	3.36	βH55C30H56 (16); βH44C25H45 (20); βH52C29H53 (22)
125		1517	1471	13.56	βН50С28Н51 (13); βН44С25Н45 (11)
126		1518	1472	44.7	βH46C26H47 (16); βH48C27H49 (16); βH52C29H53 (11)
127		1521	1475	20.1	βH32C4N5 (12); βH33C6N5 (13)
128	1490	1526	1480	20.51	βH35N9N10 (13)
129	1548	1594	1546	22.63	vN5C4 (15); vN5C6 (16); vC2C3 (24); vC2C7 (24)
130		1606	1558	12.63	vC13C14 (25); vC15C16 (10); vC13C18 (17)
131		1617	1568	3.97	vC19C24 (19); vC21C22 (19); vC19C20 (11)
132		1633	1584	23.07	vC6C7 (17); vC2C7 (10); vC3C4 (15)
133		1636	1587	41.15	vC17C18 (14)
134		1657	1607	27.72	vC19C20 (14); vC23C24 (11); vN10C11 (18)
135	1587	1674	1624	15.69	vN10C11 (70)
136	1637	1741	1689	100	vO8C1 (88)
137	2935	2995	3025	8.22	vC27H48 (39); vC27H49 (38); vC28H51 (11); vC28H50 (11)
138	2960	3000	3030	9.08	vC28H51 (26); vC28H50 (29); vC29H52 (15);

139 3010 3040 30.94 vC28H50 (13); vC29H52 (31); vC29H53 (36) 140 3013 3043 4.9 vC27H48 (24); vC27H49 (21); vC28H50 (18); vC28H50 (18); vC28H51 (25) 141 3020 3050 33.39 vC11H36 (100) 142 3022 3052 24.11 vC30H54 (25); vC30H55 (36); vC30H56 (35) 143 3025 3055 19.3 vC26H46 (46); vC26H47 (36) 144 3026 3056 4 vC27H48 (18); vC27H49 (16); vC29H52 (23); vC29H53 (23) 145 3044 3074 32.17 vC25H44 (46); vC26H47 (16); vC29H52 (16); vC29H52 (16); vC29H53 (16); vC29H53 (16); vC29H51 (19); vC29H52 (16); vC29H51 (19); vC29H52 (16); vC29H51 (10); vC26H47 (10) 147 3059 3090 20.59 vC25H44 (11); vC25H45 (43) 148 3083 3114 28.44 vC30H55 (44); vC30H55 (43); vC26H46 (10); vC26H46 (10); vC26H47 (11) 150 3088 3119 27.61 vC30H54 (74); vC30H55 (12); vC30H56 (13) 151 3162 3184 18.54 vC4H32 (10); vC2H43 (10) 152 3152 3184 18.54 vC4H32 (10); vC2H43 (30); vC22H42 (24); vC33H43 (51) 152 3162 </th <th></th> <th></th> <th></th> <th></th> <th></th> <th>vC29H53 (15)</th>						vC29H53 (15)
140 3013 3043 4.9 vC27H48 (24); vC27H49 (21); vC28H50 (18); vC28H51 (25) 141 3020 3050 33.39 vC11H36 (100) 142 3022 3052 24.11 vC30H54 (25); vC30H55 (36); vC30H56 (35) 143 3025 3055 19.3 vC26H46 (46); vC26H47 (36) 144 3026 3056 4 vC27H48 (18); vC27H49 (16); vC29H52 (23); vC29H53 (23) 145 3044 3074 32.17 vC28H50 (18); vC28H51 (19); vC29H52 (25); vC29H52 (16); vC29H53 (16); vC29H54 (11); vC26H46 (24); vC26H47 (27) 146 3046 3076 20.51 vC28H50 (18); vC28H51 (19); vC29H52 (15); vC20H45 (43) 147 3059 3090 20.59 vC28H44 (11); vC25H45 (11); vC26H46 (24); vC26H47 (27) 148 3083 3114 28.44 vC30H55 (44); vC30H55 (12); vC30H56 (13) 149 3086 3117 27.7 vC25H44 (36); vC25H45 (38); vC26H46 (10); vC26H47 (11) 150 3088 3119 27.61 vC30H55 (H4); vC30H55 (12); vC30H56 (13) 151 3147 3178 21.29 vC4H32 (10); vC21H41 (30);	139		3010	3040	30.94	vC28H50 (13); vC29H52 (31); vC29H53 (36)
141 3020 3050 33.39 vC11H36 (100) 142 3022 3052 24.11 vC30H54 (25); vC30H55 (36); vC30H56 (35) 143 3025 3055 19.3 vC26H46 (46); vC26H47 (36) 144 3026 3056 4 vC27H48 (18); vC27H49 (16); vC29H52 (23); vC29H53 (23) 145 3044 3074 32.17 vC25H44 (46); vC25H45 (45) 146 3046 3076 20.51 vC28H50 (18); vC28H51 (19); vC29H52 (16); vC29H53 (16); vC29H53 (16); vC29H53 (16); vC26H47 (10) 147 3059 3090 20.59 vC25H44 (11); vC25H45 (11); vC26H46 (24); vC26H47 (27) 148 3083 3114 28.44 vC30H55 (44); vC30H55 (43) 149 3086 3117 27.7 vC25H44 (36); vC25H45 (38); vC26H46 (10); vC26H47 (11) 150 3088 3119 27.61 vC30H54 (74); vC30H55 (12); vC30H56 (13) 151 3147 3178 21.29 vC4H32 (89); vC6H33 (10) 152 3152 3184 18.54 vC4H32 (10); vC21H41 (30); vC22H42 (41) 155 3174 3206 9.22 vC20H40 (20); vC21H41 (30); vC22H42 (41)	140		3013	3043	4.9	vC27H48 (24); vC27H49 (21); vC28H50 (18); vC28H51 (25)
142 3022 3052 24.11 vC30H54 (25); vC30H55 (36); vC30H56 (35) 143 3025 3055 19.3 vC26H46 (46); vC26H47 (36) 144 3026 3056 4 vC27H48 (18); vC27H49 (16); vC29H52 (23); vC29H53 (23) 145 3044 3074 32.17 vC25H44 (46); vC25H45 (45) 146 3046 3076 20.51 vC28H50 (18); vC28H51 (19); vC29H52 (16); vC29H53 (16); vC29H53 (16); vC26H47 (10) 147 3059 3090 20.59 vC25H44 (11); vC25H45 (11); vC26H46 (24); vC26H47 (27) 148 3083 3114 28.44 vC30H55 (44); vC30H55 (12); vC30H56 (13) 149 3086 3117 27.7 vC25H44 (36); vC25H45 (38); vC26H46 (10); vC26H47 (11) 150 3088 3119 27.61 vC30H54 (74); vC30H55 (12); vC30H56 (13) 151 3147 3178 21.29 vC4H32 (89); vC6H33 (10) 152 3152 3184 18.54 vC4H32 (10); vC2H43 (87) 153 3162 3194 12.67 vC15H38 (90); vC1H41 30); vC22H42 (41) 155 3174 3206 9.22 vC20H40 (20); vC21H41 (28); vC23H43 (51)	141		3020	3050	33.39	vC11H36 (100)
143 3025 3055 19.3 vC26H46 (46); vC26H47 (36) 144 3026 3056 4 vC27H48 (18); vC27H49 (16); vC29H52 (23); vC29H53 (23) 145 3044 3074 32.17 vC25H44 (46); vC25H45 (45) 146 3046 3076 20.51 vC28H50 (18); vC28H51 (19); vC29H52 (16); vC29H52 (16); vC29H53 (16); vC26H47 (10) 147 3059 3090 20.59 vC25H44 (11); vC25H45 (11); vC26H46 (24); vC26H47 (27) 148 3083 3114 28.44 vC30H55 (44); vC30H56 (43) 149 3086 3117 27.7 vC25H44 (36); vC25H45 (38); vC26H46 (10); vC26H47 (11) 150 3088 3119 27.61 vC30H54 (74); vC30H55 (12); vC30H56 (13) 151 3147 3178 21.29 vC4H32 (89); vC6H33 (10) 152 3152 3184 18.54 vC4H32 (10); vC6H33 (87) 153 3162 3194 12.67 vC15H38 (90); vC14H37 (10) 154 3166 3198 2.74 vC20H40 (20); vC21H41 (30); vC22H42 (41) 155 3174 3206 9.22 vC20H40 (17); vC21H41 (28); vC23H43 (51) 157	142		3022	3052	24.11	vC30H54 (25); vC30H55 (36); vC30H56 (35)
144 3026 3056 4 vC27H48 (18); vC27H49 (16); vC29H52 (23); vC29H53 (23) 145 3044 3074 32.17 vC25H44 (46); vC25H45 (45) 146 3046 3076 20.51 vC28H50 (18); vC28H51 (19); vC29H52 (16); vC29H52 (16); vC29H53 (16); vC26H47 (10) 147 3059 3090 20.59 vC25H44 (11); vC25H45 (11); vC26H46 (24); vC26H47 (27) 148 3083 3114 28.44 vC30H55 (44); vC30H56 (43) 149 3086 3117 27.7 vC25H44 (36); vC25H45 (38); vC26H46 (10); vC26H47 (11) 150 3088 3119 27.61 vC30H54 (74); vC30H55 (12); vC30H56 (13) 151 3147 3178 21.29 vC4H32 (89); vC6H33 (10) 152 3152 3184 18.54 vC4H32 (10); vC6H33 (87) 153 3162 3194 12.67 vC15H38 (90); vC14H37 (10) 154 3166 3198 2.74 vC20H40 (20); vC21H41 (30); vC22H42 (41) 155 3174 3206 9.22 vC20H40 (17); vC21H41 (28); vC23H33 (51) 157 3189 3221 18.87 vC1H37 (87) 158 3193 <td>143</td> <td></td> <td>3025</td> <td>3055</td> <td>19.3</td> <td>vC26H46 (46); vC26H47 (36)</td>	143		3025	3055	19.3	vC26H46 (46); vC26H47 (36)
1453044307432.17vC25H44 (46); vC25H45 (45)1463046307620.51vC28H50 (18); vC28H51 (19); vC29H52 (16); vC29H53 (16); vC26H47 (10)1473059309020.59vC25H44 (11); vC25H45 (11); vC26H46 (24); vC26H47 (27)1483083311428.44vC30H55 (44); vC30H56 (43)1493086311727.7vC25H44 (36); vC25H45 (38); vC26H46 (10); vC26H47 (11)1503088311927.61vC30H54 (74); vC30H55 (12); vC30H56 (13)1513147317821.29vC4H32 (89); vC6H33 (10)1523152318418.54vC4H32 (10); vC6H33 (87)1533162319412.67vC15H38 (90); vC14H37 (10)154316631982.74vC20H40 (20); vC21H41 (30); vC22H42 (41)155317432069.22vC20H40 (53); vC22H42 (28); vC23H43 (14)15632133186321819.27vC20H40 (17); vC21H41 (28); vC23H43 (51)1573189322118.87vC14H37 (87)158319332256.37vC14H37 (87)1593194322617.17vC21H41 (31); vC22H42 (23); vC23H43 (21)160320832407.9vC7H34 (98)161323032625.06vC3H31 (99)1623587350010.24vN9H35 (100)	144		3026	3056	4	vC27H48 (18); vC27H49 (16); vC29H52 (23); vC29H53 (23)
1463046307620.51vC28H50 (18); vC28H51 (19); vC29H52 (16); vC29H53 (16); vC26H47 (10)1473059309020.59vC25H44 (11); vC25H45 (11); vC26H46 (24); vC26H47 (27)1483083311428.44vC30H55 (44); vC30H56 (43)1493086311727.7vC25H44 (36); vC25H45 (38); vC26H46 (10); vC26H47 (11)1503088311927.61vC30H54 (74); vC30H55 (12); vC30H56 (13)1513147317821.29vC4H32 (89); vC6H33 (10)1523152318418.54vC4H32 (10); vC6H33 (87)1533162319412.67vC15H38 (90); vC14H37 (10)154316631982.74vC20H40 (20); vC21H41 (30); vC22H42 (41)155317432069.22vC20H40 (53); vC22H42 (28); vC23H43 (51)1573189322118.87vC14H37 (87)158319332256.37vC17H39 (97)1593194322617.17vC21H41 (31); vC22H42 (23); vC23H43 (21)160320832407.9vC7H34 (98)161323032625.06vC3H31 (99)16235873465350010.24vN9H35 (100)	145		3044	3074	32.17	vC25H44 (46); vC25H45 (45)
1473059309020.59vC25H44 (11); vC25H45 (11); vC26H46 (24); vC26H47 (27)1483083311428.44vC30H55 (44); vC30H56 (43)1493086311727.7vC25H44 (36); vC25H45 (38); vC26H46 (10); vC26H47 (11)1503088311927.61vC30H54 (74); vC30H55 (12); vC30H56 (13)1513147317821.29vC4H32 (89); vC6H33 (10)1523152318418.54vC4H32 (10); vC6H33 (87)1533162319412.67vC15H38 (90); vC14H37 (10)154316631982.74vC20H40 (20); vC21H41 (30); vC22H42 (41)155317432069.22vC20H40 (53); vC22H42 (28); vC23H43 (14)15632133186321819.27vC20H40 (17); vC21H41 (28); vC23H43 (51)1573189322118.87vC14H37 (87)158319332256.37vC17H39 (97)1593194322617.17vC21H41 (31); vC22H42 (23); vC23H43 (21)160320832407.9vC7H34 (98)161323032625.06vC3H31 (99)16235873465350010.24vN9H35 (100)	146		3046	3076	20.51	vC28H50 (18); vC28H51 (19); vC29H52 (16); vC29H53 (16); vC26H47 (10)
1483083311428.44vC30H55 (44); vC30H56 (43)1493086311727.7vC25H44 (36); vC25H45 (38); vC26H46 (10); vC26H47 (11)1503088311927.61vC30H54 (74); vC30H55 (12); vC30H56 (13)1513147317821.29vC4H32 (89); vC6H33 (10)1523152318418.54vC4H32 (10); vC6H33 (87)1533162319412.67vC15H38 (90); vC14H37 (10)154316631982.74vC20H40 (20); vC21H41 (30); vC22H42 (41)155317432069.22vC20H40 (53); vC22H42 (28); vC23H43 (14)15632133186321819.27vC20H40 (17); vC21H41 (28); vC23H43 (51)1573189322118.87vC14H37 (87)158319332256.37vC17H39 (97)1593194322617.17vC21H41 (31); vC22H42 (23); vC23H43 (21)160320832407.9vC7H34 (98)161323032625.06vC3H31 (99)16235873465350010.24vN9H35 (100)	147		3059	3090	20.59	vC25H44 (11); vC25H45 (11); vC26H46 (24); vC26H47 (27)
1493086311727.7vC25H44 (36); vC25H45 (38); vC26H46 (10); vC26H47 (11)1503088311927.61vC30H54 (74); vC30H55 (12); vC30H56 (13)1513147317821.29vC4H32 (89); vC6H33 (10)1523152318418.54vC4H32 (10); vC6H33 (87)1533162319412.67vC15H38 (90); vC14H37 (10)154316631982.74vC20H40 (20); vC21H41 (30); vC22H42 (41)155317432069.22vC20H40 (53); vC22H42 (28); vC23H43 (14)15632133186321819.27vC20H40 (17); vC21H41 (28); vC23H43 (51)1573189322118.87vC14H37 (87)158319332256.37vC17H39 (97)1593194322617.17vC21H41 (31); vC22H42 (23); vC23H43 (21)160320832407.9vC7H34 (98)161323032625.06vC3H31 (99)16235873465350010.24vN9H35 (100)	148		3083	3114	28.44	vC30H55 (44); vC30H56 (43)
1503088311927.61vC30H54 (74); vC30H55 (12); vC30H56 (13)1513147317821.29vC4H32 (89); vC6H33 (10)1523152318418.54vC4H32 (10); vC6H33 (87)1533162319412.67vC15H38 (90); vC14H37 (10)154316631982.74vC20H40 (20); vC21H41 (30); vC22H42 (41)155317432069.22vC20H40 (53); vC22H42 (28); vC23H43 (14)15632133186321819.27vC20H40 (17); vC21H41 (28); vC23H43 (51)1573189322118.87vC14H37 (87)158319332256.37vC17H39 (97)1593194322617.17vC21H41 (31); vC22H42 (23); vC23H43 (21)160320832407.9vC7H34 (98)161323032625.06vC3H31 (99)16235873465350010.24vN9H35 (100)	149		3086	3117	27.7	vC25H44 (36); vC25H45 (38); vC26H46 (10); vC26H47 (11)
1513147317821.29vC4H32 (89); vC6H33 (10)1523152318418.54vC4H32 (10); vC6H33 (87)1533162319412.67vC15H38 (90); vC14H37 (10)154316631982.74vC20H40 (20); vC21H41 (30); vC22H42 (41)155317432069.22vC20H40 (53); vC22H42 (28); vC23H43 (14)15632133186321819.27vC20H40 (17); vC21H41 (28); vC23H43 (51)1573189322118.87vC14H37 (87)158319332256.37vC17H39 (97)1593194322617.17vC21H41 (31); vC22H42 (23); vC23H43 (21)160320832407.9vC7H34 (98)161323032625.06vC3H31 (99)16235873465350010.24vN9H35 (100)	150		3088	3119	27.61	vC30H54 (74); vC30H55 (12); vC30H56 (13)
1523152318418.54vC4H32 (10); vC6H33 (87)1533162319412.67vC15H38 (90); vC14H37 (10)154316631982.74vC20H40 (20); vC21H41 (30); vC22H42 (41)155317432069.22vC20H40 (53); vC22H42 (28); vC23H43 (14)15632133186321819.27vC20H40 (17); vC21H41 (28); vC23H43 (51)1573189322118.87vC14H37 (87)158319332256.37vC17H39 (97)1593194322617.17vC21H41 (31); vC22H42 (23); vC23H43 (21)160320832407.9vC7H34 (98)161323032625.06vC3H31 (99)16235873465350010.24vN9H35 (100)	151		3147	3178	21.29	vC4H32 (89); vC6H33 (10)
1533162319412.67vC15H38 (90); vC14H37 (10)154316631982.74vC20H40 (20); vC21H41 (30); vC22H42 (41)155317432069.22vC20H40 (53); vC22H42 (28); vC23H43 (14)15632133186321819.27vC20H40 (17); vC21H41 (28); vC23H43 (51)1573189322118.87vC14H37 (87)158319332256.37vC17H39 (97)1593194322617.17vC21H41 (31); vC22H42 (23); vC23H43 (21)160320832407.9vC7H34 (98)161323032625.06vC3H31 (99)16235873465350010.24vN9H35 (100)	152		3152	3184	18.54	vC4H32 (10); vC6H33 (87)
154316631982.74vC20H40 (20); vC21H41 (30); vC22H42 (41)155317432069.22vC20H40 (53); vC22H42 (28); vC23H43 (14)15632133186321819.27vC20H40 (17); vC21H41 (28); vC23H43 (51)1573189322118.87vC14H37 (87)158319332256.37vC17H39 (97)1593194322617.17vC21H41 (31); vC22H42 (23); vC23H43 (21)160320832407.9vC7H34 (98)161323032625.06vC3H31 (99)16235873465350010.24vN9H35 (100)	153		3162	3194	12.67	vC15H38 (90); vC14H37 (10)
155317432069.22vC20H40 (53); vC22H42 (28); vC23H43 (14)15632133186321819.27vC20H40 (17); vC21H41 (28); vC23H43 (51)1573189322118.87vC14H37 (87)158319332256.37vC17H39 (97)1593194322617.17vC21H41 (31); vC22H42 (23); vC23H43 (21)160320832407.9vC7H34 (98)161323032625.06vC3H31 (99)16235873465350010.24vN9H35 (100)	154		3166	3198	2.74	vC20H40 (20); vC21H41 (30); vC22H42 (41)
156 3213 3186 3218 19.27 vC20H40 (17); vC21H41 (28); vC23H43 (51) 157 3189 3221 18.87 vC14H37 (87) 158 3193 3225 6.37 vC17H39 (97) 159 3194 3226 17.17 vC21H41 (31); vC22H42 (23); vC23H43 (21) 160 3208 3240 7.9 vC7H34 (98) 161 3230 3262 5.06 vC3H31 (99) 162 3587 3465 3500 10.24 vN9H35 (100)	155		3174	3206	9.22	vC20H40 (53); vC22H42 (28); vC23H43 (14)
157 3189 3221 18.87 vC14H37 (87) 158 3193 3225 6.37 vC17H39 (97) 159 3194 3226 17.17 vC21H41 (31); vC22H42 (23); vC23H43 (21) 160 3208 3240 7.9 vC7H34 (98) 161 3230 3262 5.06 vC3H31 (99) 162 3587 3465 3500 10.24 vN9H35 (100)	156	3213	3186	3218	19.27	vC20H40 (17); vC21H41 (28); vC23H43 (51)
158 3193 3225 6.37 vC17H39 (97) 159 3194 3226 17.17 vC21H41 (31); vC22H42 (23); vC23H43 (21) 160 3208 3240 7.9 vC7H34 (98) 161 3230 3262 5.06 vC3H31 (99) 162 3587 3465 3500 10.24 vN9H35 (100)	157		3189	3221	18.87	vC14H37 (87)
159 3194 3226 17.17 vC21H41 (31); vC22H42 (23); vC23H43 (21) 160 3208 3240 7.9 vC7H34 (98) 161 3230 3262 5.06 vC3H31 (99) 162 3587 3465 3500 10.24 vN9H35 (100)	158		3193	3225	6.37	vC17H39 (97)
160 3208 3240 7.9 vC7H34 (98) 161 3230 3262 5.06 vC3H31 (99) 162 3587 3465 3500 10.24 vN9H35 (100)	159		3194	3226	17.17	vC21H41 (31); vC22H42 (23); vC23H43 (21)
161 3230 3262 5.06 vC3H31 (99) 162 3587 3465 3500 10.24 vN9H35 (100)	160		3208	3240	7.9	vC7H34 (98)
162 3587 3465 3500 10.24 vN9H35 (100)	161		3230	3262	5.06	vC3H31 (99)
	162	3587	3465	3500	10.24	vN9H35 (100)

v - stretching, β - in-plane bending, τ - torsional vibrations, Γ - out of plane bending

Mada	Expt.	C	alc. Freq.		
Mode	Freq.	Unscaled	Scaled	$I_{\rm IR}$	- Vibrational Assignment with PED (%)
1		12	12	0.22	τC15C16C11N10 (50); τC1N9N10C11 (24)
2		17	16	1.18	τC13N12C25C26 (29); βC16C11N10 (10)
3		20	19	1.94	βC1N9N10 (14); βC11C16C17 (10); βC11N10N9 (11); τC13N12C25C26 (15); βC16C11N10 (14)
4		25	24	0.62	ГС25С13С24N12 (37)
5		39	38	1.03	ΓC25C13C24N12 (18); τC7C2C1N9 (22); τC2C1N9N10 (17)
6		49	48	0.93	τC7C2C1N9 (25)
7		69	67	0.47	τC27C26C25N12 (44)
8		71	69	1.27	τC27C26C25N12 (18)
9		86	83	1.85	ГВг50С20С22С21 (11); ГС18С19С24С20 (16)
10		98	95	5.8	τC7C2C1N9 (16); τC1N9N10C11 (13); τC2C1N9N10 (12)
11		109	106	0.4	τC27C26C25N12 (14); τC25C26C27C28 (54)
12		124	120	2.75	τC19C24C22C23 (13); τC1N9N10C11 (10)
13		135	131	2.96	ΓC1C2C7C3 (24); βC22C21Br50 (14)
14		169	164	3.98	τC15C16C11N10 (12)
15		187	181	4.16	βC25C26C27 (13)
16		203	197	3.2	βC25C26C27 (14)
17		213	207	6.74	βC1C2C7 (18)
18		217	210	9.67	ГBr50C20C22C21 (10)
19		228	221	4.43	vBr50C21 (10); βC24N12C25 (12); τH47C28C27C26 (11)
20		242	235	4.19	vBr50C21 (10); тH48C28C27C26 (10); тH47C28C27C26 (23)
21		251	243	11.83	βC1C2C7 (15)
22		262	254	8.1	βC1C2C7 (12); βC22C21Br50 (10)
23		289	280	11.63	τC16C11N10N9 (24); τC2C1N9N10 (11); τC13C18C16C17 (10)
24		314	305	5.36	vBr50C21 (15); βC24N12C25 (14)
25		326	316	0.76	βC24N12C25 (12); βC22C21Br50 (14)
26		353	342	2.77	ΓBr50C20C22C21 (13); τC15C14C16C17 (12); βC26C27C28 (12)

 Table S4. Experimental and calculated vibrational frequencies along with their proposed

 assignment of hydrazide 6c

27		369	358	7.7	βN9C1O8 (14); βC4N5C6 (12); νC1C2 (22)
28		391	379	1.43	τC7C4C6N5 (17); τC2C7N5C6 (15); τC4C3N5C6 (31); τH29C3C4N5 (10); τH32C7C6N5 (10)
29		399	387	5.5	βC26C27C28 (21); τC17C18C19C24 (14)
30		419	406	14.56	βC2C1N9 (11); τC7C4C6N5 (15); βC16C17C18 (10)
31	426	433	420	9.39	τC22C21C23C24 (20); ΓC18C19C24C20 (14); τC13C18C16C17 (16)
32		445	432	6.3	βC26C25N12 (18); βC26C27C28 (15); τC17C18C19C24 (10)
33		460	446	7.3	тС13С18С14С15 (26); ГС11С15С17С16 (11)
34		477	463	16.08	βC16C17C18 (11)
35		498	483	25.96	βC16C11N10 (10)
36		554	537	18.21	βC17C18C19 (17)
37		581	564	12.37	тС22С21С23С24 (19); тС21С20С22С23 (32)
38		594	576	18.51	βN9C1O8 (11); βC14C15C16 (10)
39		616	598	22.57	τH33N9N10C11 (69)
40		628	609	13.45	τC15C14C16C17 (17); ΓC11C15C17C16 (29); ΓC19C13C17C18 (13)
41		649	630	10.92	βC16C17C18 (10)
42		651	631	18.07	βC14C13C18 (36)
43		655	635	30.49	βC21C22C23 (13); βC18C19C24 (10)
44		679	659	8.46	βC7C6N5 (14)
45		687	666	5.33	βC3C4N5 (21)
46	683	726	704	29.66	τC2C7N5C6 (22); τC4C3N5C6 (10); ΓO8C2N9C1 (33)
47		739	717	5.87	τH43C26C27C28 (20); τH45C27C26C25 (20); βH43C26C27 (16); βH45C27C28 (12)
48		745	723	7.42	ГС18С19С24С20 (12); ГN12С19С23С24 (19)
49		751	728	11.42	ГN12С19С23С24 (11)
50		755	732	3.34	vC1C2 (11)
51		773	750	19.76	τC7C4C6N5 (10); τC2C7N5C6 (27); τC4C3N5C6 (12); ΓO8C2N9C1 (14); τH29C3C4N5 (14); τH32C7C6N5 (13)
52		775	752	3.04	τC13C18C14C15 (11); ΓC19C13C17C18 (23); τC13C18C16C17 (11)
53		793	769	4.31	τH41C25N12C13 (10); τH45C27C26C25 (10); τH47C28C27C26 (16); τH44C26C27C28 (11)
54		808	784	16.93	тН39С22С23С24 (35); тН40С23С24N12 (44)

55		814	790	21.8	тН35С14С15С16 (22); тН36С15С16С11 (17)
56	799	816	792	16.63	тН35С14С15С16 (21); тН36С15С16С11 (15)
57	843	863	837	19.89	ΓΟ8C2N9C1 (19); ΓC1C2C7C3 (19); τH29C3C4N5 (18); τH30C4N5C6 (18); τH31C6N5C4 (11)
58		879	853	8.61	βC20C21C22 (10)
59		892	865	12.09	τH38C20C21C22 (78)
60		898	871	7.18	τH29C3C4N5 (29); τH31C6N5C4 (21); τH32C7C6N5 (39)
61		911	884	5.84	τH48C28C27C26 (16); τH49C28C27C26 (16); νC26C27 (26); νC27C28 (15)
62		924	896	5.67	τH37C17C18C13 (62); τC13C18C16C17 (11); τH34C11N10N9 (11)
63		940	912	6.37	τH35C14C15C16 (19); τH36C15C16C11 (30); τH39C22C23C24 (12); τH40C23C24N12 (10)
64		942	914	3.46	τH39C22C23C24 (37); τH40C23C24N12 (30)
65		946	918	21.02	vC16C17 (18)
66	932	961	932	2.89	τH47C28C27C26 (10); βH43C26C27 (19); βH45C27C28 (10)
67		968	939	14.34	τH36C15C16C11 (14); τH34C11N10N9 (71)
68		992	962	4.58	τH29C3C4N5 (22); τC4C3N5C6 (10); τH30C4N5C6 (34); τH31C6N5C4 (10); τH32C7C6N5 (16)
69	976	1005	975	6.43	vC25C26 (49); vC27C28 (30)
70		1007	977	7.32	τH30C4N5C6 (19); τH31C6N5C4 (35); τH32C7C6N5 (12)
71		1013	983	7.6	βC4N5C6 (12); βC3C4N5 (14); βC7C6N5 (16); vN5C4 (15); vN5C6 (16)
72		1039	1008	13.41	vC21C22 (29)
73		1055	1023	2.49	vC25C26 (16); vC27C28 (37); vC26C27 (37)
74		1071	1039	15.43	νC20C21 (16); βH38C20C21 (10)
75		1083	1051	14.23	βC22C23C24 (18); βC20C21C22 (17); vN12C25 (20)
76		1094	1061	15.8	βC3C4N5 (19); βC7C6N5 (25); βH32C7C6 (18)
77		1111	1078	2.21	βH32C7C6 (15); vC3C4 (23); βH29C3C4 (22); vC6C7 (16)
78		1129	1095	12.98	τH48C28C27C26 (16); τH49C28C27C26 (16); νC26C27 (15); βC25C26C27 (10)
79		1132	1098	14.82	vN9N10 (21); vC2C7 (12)
80		1153	1118	35.36	βH35C14C15 (16)
81		1169	1134	43.09	vN9N10 (20); βH39C22C23 (10)

82		1172	1137	13.21	βH39C22C23 (17); vC22C23 (14);
83	1148	1178	1143	12.83	βH36C15C16 (24); vN9N10 (10); βH35C14C15 (11); vC14C15 (12)
84		1210	1174	26.96	vC11C16 (18); vC18C19 (14)
85		1237	1200	31.21	βН43С26С27 (10); βН41С25С26 (14)
86		1243	1206	11.44	βH32C7C6 (11); βH29C3C4 (10); βH30C4N5 (23); νN5C4 (11); νN5C6 (12); βH31C6N5 (20)
87	1213	1249	1212	29.53	vC18C19 (10); βH37C17C18 (12)
88		1271	1233	20.6	βН38С20С21 (16); βН43С26С27 (10)
89	1244	1275	1237	10.18	vN5C4 (27); vN5C6 (24); vC6C7 (10); vC2C7 (12); vC2C3 (15)
90		1293	1254	20.75	βH37C17C18 (12); βH38C20C21 (18); βH34C11N10 (10)
91		1296	1257	13.99	τΗ43С26С27С28 (19); τΗ44С26С27С28 (23)
92		1310	1271	40.75	βH45C27C28 (12)
93	1281	1328	1288	26.72	βН45С27С28 (24); βН41С25С26 (14)
94	1298	1334	1294	14.13	βH43C26C27 (30); βH45C27C28 (16); βH41C25C26 (11); τH44C26C27C28 (10)
95		1344	1304	80.2	vC1C2 (11); βH29C3C4 (13); vN9C1 (20)
96		1354	1313	19.21	βH29C3C4 (12); βH32C7C6 (11); βH31C6N5 (10)
97		1360	1319	48.76	vN9C1 (11); βH31C6N5 (11)
98	1329	1374	1333	44.51	vN12C25 (20); vN12C13 (16); vN12C24 (15)
99		1384	1342	3.44	τH41C25N12C13 (10); τH45C27C26C25 (12); τH46C27C26C25 (23); τH42C25N12C13 (13)
100	1352	1390	1348	35.54	βH34C11N10 (40); βH33N9N10 (22)
101		1406	1364	16.5	τH42C25N12C13 (13); τH43C26C27C28 (11); τH44C26C27C28 (13)
102		1414	1372	19.71	βH41C25C26 (11); vN12C13 (10); vN12C24 (10)
103	1383	1417	1374	8.44	βH47C28H49 (27); βH47C28H48 (28); βH48C28H49 (24)
104		1440	1397	21.59	βH30C4N5 (28); βH31C6N5 (22); νC6C7 (15); νC3C4 (14)
105	1408	1453	1409	8.07	βH35C14C15 (10); βH40C23C24 (11); vC14C15 (13); vC22C23 (15); vC19C20 (10)
106	1439	1474	1430	42.11	βH39C22C23 (13); vC20C21 (21)
107		1492	1447	6.58	βН45С27Н46 (44); βН43С26Н44 (37)
108		1494	1449	11.23	βH45C27H46 (13); βH43C26H44 (15); βH48C28H49 (13); βH41C25H42 (24)
109		1500	1455	15.28	βН47С28Н49 (34); βН47С28Н48 (40);

					τH47C28C27C26 (14)
110		1502	1457	47.85	βH43C26H44 (12); βH33N9N10 (10)
111		1505	1460	29.52	βH33N9N10 (19); βH41C25H42 (11)
112		1507	1462	19.3	βH41C25H42 (14); βH48C28H49 (11)
113	1468	1516	1471	18.24	βH41C25H42 (15); βH43C26H44 (21); βH45C27H46 (29); βH48C28H49 (11)
114		1520	1474	13.48	βH30C4N5 (12); βH31C6N5 (13)
115	1491	1525	1479	24.09	βH33N9N10 (12)
116		1595	1547	22.14	vN5C4 (15); vN5C6 (16); vC2C7 (25); vC2C3 (24)
117	1555	1603	1555	10.69	vC21C22 (17); vC19C24 (23); vC19C20 (12)
118		1606	1558	12.11	vC13C14 (25); vC15C16 (10); vC13C18 (17)
119		1631	1582	29.91	vC19C20 (10); vC23C24 (15); vC17C18 (12)
120		1634	1585	14.3	vC6C7 (19); vC2C7 (13); vC2C3 (11); vC3C4 (18)
121		1653	1603	31.12	vC17C18 (11); vN10C11 (19)
122	1589	1675	1625	21.35	vN10C11 (52)
123	1643	1744	1692	100	vO8C1 (79)
124	2870	3006	2916	18.15	vC27H45 (48); vC27H46 (46)
125		3021	2930	12.09	vC11H34 (100)
126		3022	2931	36.33	vC26H44 (28); vC26H43 (25); vC28H48 (17); vC28H49 (15)
127		3026	2935	23.23	vC26H44 (21); vC28H47 (16); vC26H43 (12); vC28H48 (18); vC28H49 (23)
128		3028	2937	11.32	vC27H45 (36); vC27H46 (43); vC26H43 (13)
129	2953	3043	2952	31.9	vC25H41 (42); vC25H42 (48)
130		3056	2964	9.34	vC26H43 (32); vC26H44 (31); vC25H41 (12); vC25H42 (10)
131		3083	2991	0.85	vC25H41 (29); vC25H42 (26); vC28H48 (18); vC28H49 (18)
132		3088	2995	34.56	vC25H41 (12); vC25H42 (11); vC28H48 (26); vC28H49 (29)
133		3092	2999	27.47	vC28H47 (74); vC28H48 (14); vC28H49 (11)
134		3148	3054	21.71	vC4H30 (84); vC6H31 (15)
135		3153	3058	17.3	vC4H30 (15); vC6H31 (83)
136		3164	3069	12.53	vC15H36 (91)
137		3186	3090	11.13	vC22H39 (16); vC23H40 (84)
138		3192	3096	17.2	vC14H35 (83)
139		3194	3098	3.64	vC17H37 (90)

140		3200	3104	2.13	vC20H38 (97)
141		3206	3110	8.17	vC22H39 (83); vC23H40 (16)
142		3207	3111	7.89	vC7H32 (97)
143	3221	3227	3130	5.73	vC3H29 (99)
144	3400	3465	3361	10.04	vN9H33 (100)

v - stretching, β - in-plane bending, τ - torsional vibrations, Γ - out of plane bending

Hydrazide 6a			Hydrazide 6b			Hydrazide 6c		
Atom	Calc.	Expt.	Atom	Calc.	Expt.	Atom	Calc.	Expt.
H29	8.28	8.79	H31	8.31	8.64	H29	8.15	8.50
H30	8.80	8.81	H32	8.75	8.81	H30	8.69	8.80
H31	8.74	8.80	H33	8.73	8.80	H31	8.58	8.79
H32	7.84	8.64	H34	7.83	8.50	H32	7.73	7.91
H33	8.13	12.03	H35	8.17	12.03	H33	7.99	12.02
H34	7.72	7.87	H36	7.73	7.91	H34	7.60	7.85
H35	7.32	7.46	H37	7.42	7.49	H35	7.21	7.48
H36	7.44	7.67	H38	7.43	7.86	H36	7.28	7.64
H37	8.68	8.29	H39	8.69	8.25	H37	8.63	8.63
H38	8.08	8.23	H40	8.05	8.23	H38	7.98	8.25
H39	7.18	7.22	H41	7.17	7.23	H39	7.29	7.70
H40	7.45	7.86	H42	7.41	7.68	H40	7.09	7.24
H41	7.35	7.61	H43	7.41	7.61	H41	3.95	4.44
H42	4.15	4.41	H44	4.11	4.40	H42	3.96	4.44
H43	4.14	4.38	H45	4.12	4.40	H43	1.50	1.77
H44	1.62	1.77	H46	1.64	1.76	H44	1.45	1.77
H45	1.53	1.70	H47	1.63	1.76	H45	1.33	1.33
H46	1.44	1.33	H48	1.41	1.25	H46	1.33	1.31
H47	1.46	1.24	H49	1.38	1.25	H47	1.09	0.91
H48	1.15	0.90	H50	1.15	1.25	H48	0.75	0.88
H49	0.78	0.87	H51	1.16	1.21	H49	0.76	0.89
H50	0.77	0.86	H52	1.29	1.21			
			H53	1.30	1.21			
			H54	1.10	0.80			
			H55	0.70	0.78			
			H56	0.71	0.78			

 Table S5. Experimental and calculated ¹H chemical shift values of hydrazides 6a-c

Hydrazide 6a			Hydrazide 6b			Hydrazide 6a		
Atom	Calc.	Expt.	Atom	Calc.	Expt.	Atom	Calc.	Expt.
C1	162.1	161.8	C1	162.5	161.8	C1	161.8	161.1
C2	138.0	140.9	C2	138.2	140.9	C2	137.9	126.7
C3	123.3	123.7	C3	123.4	123.7	C3	123.2	123.7
C4	147.2	150.7	C4	147.4	150.7	C4	147.2	141.7
C6	148.4	150.7	C6	148.5	150.7	C6	148.1	150.7
C7	122.6	122.7	C7	122.5	122.7	C7	122.2	122.0
C11	141.4	150.0	C11	141.3	150.0	C11	140.8	141.4
C13	140.3	141.7	C13	140.5	141.7	C13	140.0	141.2
C14	105.6	110.1	C14	105.9	110.1	C14	106.3	110.1
C15	126.8	126.7	C15	126.7	126.7	C15	127.0	125.1
C16	123.3	125.1	C16	122.8	125.1	C16	122.8	122.7
C17	114.0	119.8	C17	114.2	119.8	C17	114.5	119.8
C18	122.9	122.7	C18	123.2	122.7	C18	121.3	121.1
C19	122.1	122.4	C19	122.2	122.4	C19	122.7	122.4
C20	118.4	121.1	C20	118.9	121.1	C20	121.0	120.8
C21	117.0	120.8	C21	117.0	120.8	C21	127.2	125.4
C22	123.8	125.3	C22	123.8	125.3	C22	126.5	124.0
C23	106.3	110.3	C23	106.3	110.3	C23	107.5	110.2
C24	139.9	141.2	C24	140.2	141.2	C24	138.5	140.9
C25	43.7	42.6	C25	43.7	42.8	C25	43.5	42.6
C26	31.6	31.1	C26	30.4	31.4	C26	31.0	31.1
C27	22.3	20.2	C27	30.1	28.9	C27	21.6	20.2
C28	13.5	14.1	C28	34.2	26.5	C28	13.2	14.1
			C29	26.1	22.4			
			C30	13.8	14.2			

 Table S6. Experimental and calculated ¹³C chemical shift values of hydrazides 6a-c