Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

Supplementary Information

A concise Friedländer/Buchwald-Hartwig approach to the total synthesis of quindoline, a bioactive natural indoloquinoline alkaloid, and toward the unnatural 10-methylquindoline

María V. Méndez, Sebastian O. Simonetti, Teodoro S. Kaufman and Andrea B. J. Bracca

Instituto de Química Rosario (IQUIR, CONICET-UNR) and Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina. bracca@iquir-conicet.gov.ar; kaufman@iquir-conicet.gov.ar

TABLE OF CONTENTS

Figure S1. 300 MHz ¹ H NMR spectrum (top) and 75 MHz ¹³ C NMR spectrum (bottom) of 17 in CDCl ₃	S2
Figure S2. TOCSY NMR spectrum (top) and COSY NMR spectrum (bottom) of 17 in CDCl3	S3
Figure S3. HSQC NMR spectrum (top) and HMBC NMR spectrum (bottom) of 17 in CDCl3	S4
Figure S4. 300 MHz ¹ H NMR spectrum (top) and 75 MHz ¹³ C NMR spectrum (bottom) of 21 in CDCl ₃	S5
Figure S5. COSY NMR spectrum of 21 in CDCl ₃	S6
Figure S6. HSQC NMR spectrum (top) and HMBC NMR spectrum (bottom) of 21 in CDCl ₃	S 7
Figure S7. 300 MHz ¹ H NMR spectrum (top) and 75 MHz ¹³ C NMR spectrum (bottom) of 22 in CDCl ₃	S 8
Figure S8. COSY NMR spectrum of 22 in CDCl ₃	S9
Figure S9. HSQC NMR spectrum (top) and HMBC NMR spectrum (bottom) of 22 in CDCl ₃	S10
Figure S10. 300 MHz ¹ H NMR spectrum (top) and 75 MHz ¹³ C NMR spectrum (bottom) of 18 in CDCl ₃	S11
Figure S11. TOCSY NMR spectrum (top) and COSY NMR spectrum (bottom) of 18 in CDCl3	S12
Figure S12. HSQC NMR spectrum (top) and HMBC NMR spectrum (bottom) of 18 in CDCl3	S13
Figure S13. 300 MHz ¹ H NMR spectrum (top) and 75 MHz ¹³ C NMR spectrum (bottom) of 23 in CDCl ₃	S14
Figure S14. TOCSY NMR spectrum (top) and COSY NMR spectrum (bottom) of 23 in CDCl ₃	S15
Figure S15. HSQC NMR spectrum (top) and HMBC NMR spectrum (bottom) of 23 in CDCl3	S16
Figure S16. 300 MHz ¹ H NMR spectrum (top) and 75 MHz ¹³ C NMR spectrum (bottom) of 1 in CDCl ₃	S17
Figure S17. COSY NMR spectrum of 1 in CDCl ₃	S18
Figure S18. HSQC NMR spectrum (top) and HMBC NMR spectrum (bottom) of 1 in CDCl3	S19
Figure S19. 300 MHz ¹ H NMR spectrum (top) and 75 MHz ¹³ C NMR spectrum (bottom) of 14 in CDCl ₃	S20
Figure S20. COSY NMR spectrum of 14 in CDCl ₃	S21
Figure S21. HSQC NMR spectrum (top) and HMBC NMR spectrum (bottom) of 14 in CDCl3	S22
Computational methods with full list of authors in the Gaussian 09 reference	S23
Figure S22. Shapes and energies of FMOs of the nitroso derivative 19 and the nitrene A	S24
Optimized geometries of relevant structures. Data not included in the paper, Cartesian coordinates, absolute energies including zero-points energy corrections, free energies and free energies in solution (in Hartrees) in all bases, and number of imaginary frequencies of all stationary points reported in this paper and values of the imaginary frequencies in all transition states	S25

Figure S1. 300 MHz ¹H NMR spectrum (top) and 75 MHz ¹³C NMR spectrum (bottom) of 17 in CDCl₃.

Figure S2. TOCSY NMR spectrum (top) and COSY NMR spectrum (bottom) of 17 in CDCl3.

Figure S3. HSQC NMR spectrum (top) and HMBC NMR spectrum (bottom) of 17 in CDCl₃.

8.4586 8.2717 8.2717 8.2441 8.0745 8.0745 7.7833 7.7583 7.7583 7.7583 7.7580 7.7580 7.7580 7.7580 7.7580 7.2454

Figure S4. 300 MHz ¹H NMR spectrum (top) and 75 MHz ¹³C NMR spectrum (bottom) of 21 in CDCl₃.

Figure S5. COSY NMR spectrum of 21 in CDCl₃.

Figure S6. HSQC NMR spectrum (top) and HMBC NMR spectrum (bottom) of 21 in CDCl₃.

Figure S7. 300 MHz ¹H NMR spectrum (top) and 75 MHz ¹³C NMR spectrum (bottom) of 22 in CDCl₃.

Figure S8. COSY NMR spectrum of 22 in CDCl₃.

Figure S9. HSQC NMR spectrum (top) and HMBC NMR spectrum (bottom) of 22 in CDCl₃.

Figure S10. 300 MHz ¹H NMR spectrum (top) and 75 MHz ¹³C NMR spectrum (bottom) of 18 in CDCl₃.

Figure S11. TOCSY NMR spectrum (top) and COSY NMR spectrum (bottom) of 18 in CDCl₃.

Figure S12. HSQC NMR spectrum (top) and HMBC NMR spectrum (bottom) of 18 in CDCl₃.

Figure S13. 300 MHz¹H NMR spectrum (top) and 75 MHz¹³C NMR spectrum (bottom) of 23 in CDCl₃.

Figure S14. TOCSY NMR spectrum (top) and COSY NMR spectrum (bottom) of 23 in CDCl₃.

Figure S15. HSQC NMR spectrum (top) and HMBC NMR spectrum (bottom) of 23 in CDCl₃.

Figure S16. 300 MHz ¹H NMR spectrum (top) and 75 MHz ¹³C NMR spectrum (bottom) of 1 in CDCl₃.

Figure S17. COSY NMR spectrum of 1 in CDCl₃.

Figure S18. HSQC NMR spectrum (top) and HMBC NMR spectrum (bottom) of 1 in CDCl₃.

Figure S19. 300 MHz ¹H NMR spectrum (top) and 75 MHz ¹³C NMR spectrum (bottom) of 14 in CDCl₃.

Figure S20. COSY NMR spectrum of 14 in CDCl₃.

Figure S21. HSQC NMR spectrum (top) and HMBC NMR spectrum (bottom) of 14 in CDCl₃.

Computational methods

Conformational searches for the reactants, the transition structures (TSs) and the products were run to locate the global minima at the B3LYP/6-31G* level of theory. Initially, a large number of geometries was generated using the conformational search module of Hyperchem with the MM+ method.¹ Selected structures were then successively reoptimized at the B3LYP/6-31G* and B3LYP/6-311+G** levels of theory.²

The geometries for all structures were fully optimized and normal mode analysis was used to confirm the nature of the stationary points and to evaluate the thermochemical properties. Reported thermochemical properties include zero-point energies (ZPEs) without scaling and were calculated at 1 atm and 298.15 K and 383.15 K, temperature where the reaction was carried out.

The molecular orbitals of the reactants were calculated to analyze the frontier orbital interactions. Intrinsic reaction coordinate (IRCs) calculations were run to verify the connectivity between reactants, TSs and products. To examine the more important interactions in the TSs we performed natural bond orbital calculations and Wiberg bond indexes (WBIs) were analyzed.

To interpret the presence of hydrogen bonds and the energy value, Second Order Perturbation analysis was carried out of the transition state at different level theories. Free energies in solution were computed on the structures optimized in the gas phase at the B3LYP/6-31G* with PPh₃ and PPh₃O as the phosphines and B3LYP/6-311+G** with the simplest PMe₃ and PMe₃O levels of theory with the polarizable continuum model (PCM)³ using toluene as solvent ($\varepsilon_{toluene}$ = 2.379).

¹ Hyperchem Professional Release 7.52, Hypercube, Inc., 2005.

Gaussian 09, Revision D.01: M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2013.

 ^{3 (}a) S. Miertš, E Scrocco and J. Tomasi, J. Chem. Phys., 1981, 55, 117-129. (b) B. Mennucci and J. Tomasi, J. Chem. Phys., 1997, 106, 5151-5158. (c) J. Tomasi, B., Mennucci and R. Cammi, Chem. Rev., 2005, 105, 2999-3094.

Figure S22. Shapes and energies (in eV) of FMOs of the nitroso derivative 19 and the nitrene A.

2-(2-Nitrophenyl)-quinoline (17).-

С	4.77624700	0.20173400	-0.25436600
С	4.07752200	-0.81433400	0.35782000
С	2.65972600	-0.84251500	0.30552100
С	1.96378000	0.19725100	-0.39119100
С	2.71288400	1.23170300	-1.01291700
С	4.08747600	1.23189800	-0.94371500
С	1.87351100	-1.85260400	0.91353000
С	0.50477100	-1.80120100	0.81266100
С	-0.09279000	-0.72543200	0.09707900
Ν	0.60601800	0.23331000	-0.48487900
С	-1.57334700	-0.67156300	-0.07128800
С	-2.32950400	0.50095300	0.08876900
С	-3.69061400	0.55505600	-0.19890100
С	-4.34865100	-0.59770100	-0.62251900
С	-3.63221600	-1.78568700	-0.76650600
С	-2.26272600	-1.81369800	-0.50226000
Ν	-1.73438400	1.72823000	0.65139600
0	-2.11451100	2.80024800	0.18271300
0	-0.94974600	1.60344700	1.58695200
Н	5.86170800	0.21906900	-0.21060500
Н	4.60094600	-1.60576500	0.88933000
Н	2.16319500	2.01045400	-1.53184600
Н	4.65474600	2.02749500	-1.41894600
Н	2.36210300	-2.65460500	1.46214100
Н	-0.12128600	-2.55024300	1.28687900
Н	-4.21691400	1.49380600	-0.07071000
Н	-5.41289200	-0.56493300	-0.83506800
н	-4.13378600	-2.68914900	-1.10132200
Н	-1.70161000	-2.72962900	-0.66308800

2-(2-Nitrosophenyl)-quinoline (19).-

1	B3LYP/6-31G* Energy + ZPE: -762.064507.
	B3LYP/6-31G* Free Energy: -762.105299.
	B3LYP/6-31G* Free Energy in Toluene: -762.108963.
19	B3LYP/6-31G* Free Energy in Toluene (383.15 K): -762.098029.
	B3LYP/6-311+G** Energy + ZPE: -762.257213.
	B3LYP/6-311+G** Free Energy: -762.298163.
	B3LYP/6-311+G** Free Energy in Toluene: -762.302423.
	B3LYP/6-311+G** Free Energy in Toluene (383.15K): -762.319252.
	Number of Imaginary Frequencies: 0

С	4.85762900	0.05578100	0.11502500
С	4.39375900	-1.20209400	0.57654400
С	3.04693500	-1.48485400	0.60290300
С	2.10122600	-0.51796400	0.16689200
С	2.57077200	0.75127600	-0.29825800
С	3.96491100	1.01263000	-0.31408300
Ν	0.77916700	-0.83774300	0.20824900
С	-0.11447900	0.06025600	-0.18325200
С	0.26049600	1.34394300	-0.68072600
С	1.59066000	1.67799400	-0.73300900
С	-1.53531000	-0.39599600	-0.14074900
С	-2.64006700	0.43713500	0.15429400
С	-3.95252800	-0.06357300	0.14533900
С	-4.18786400	-1.39627000	-0.14862600
С	-3.10174800	-2.24103900	-0.42111100
С	-1.80092300	-1.74891400	-0.41179500
Ν	-2.36634600	1.79551900	0.53970000
Н	5.92431500	0.26188700	0.10210800
Н	5.11171800	-1.94547400	0.91217000
Н	2.66785300	-2.43967400	0.95368800
Н	4.31555900	1.97880900	-0.66941200
Н	-0.49855900	2.03966000	-1.01216300
Н	1.90193000	2.64856100	-1.11222500
Н	-4.75539500	0.62320100	0.39138600
Н	-5.20168800	-1.78650500	-0.15742900
Н	-3.27496800	-3.29059100	-0.64364100
Н	-0.96083200	-2.40275900	-0.61651700
0	-3.35506200	2.48482300	0.75500900

С	-4.44781300	0.26235600	-0.07925000
С	-3.71977100	1.46522000	0.04032800
С	-2.34061000	1.45418600	0.13997400
С	-1.65879400	0.21918600	0.10030500
С	-2.37779300	-1.00716100	-0.03167700
С	-3.78843000	-0.95144000	-0.11229400
С	-1.63571100	-2.22907300	-0.07499500
С	-0.26715100	-2.21847700	-0.00878100
С	0.40915500	-0.97779900	0.13192100
Ν	-0.29313000	0.16948600	0.21802000
С	1.81122000	-0.67693700	0.07730200
С	1.98993700	0.72250800	-0.03992300
С	3.27236600	1.29189100	-0.09827700
С	4.36406100	0.43976000	-0.06345700
С	4.20002600	-0.96205100	0.01410900
С	2.93355900	-1.52228400	0.07747000
Ν	0.81610000	1.44041200	-0.29070200
0	0.62483400	2.61971800	0.05800200
Н	-5.53154600	0.29295500	-0.14644600
Н	-4.24984900	2.41320600	0.06035600
Н	-1.76205500	2.36670900	0.22502000
Н	-4.34489200	-1.88047000	-0.20930000
Н	-2.17563700	-3.16611900	-0.18072500
Н	0.30932100	-3.13567900	-0.07168900
Н	3.37517000	2.36953200	-0.16662700
Н	5.36751500	0.85611500	-0.08998100
Н	5.07630500	-1.60313000	0.03451000
Н	2.81070700	-2.59946200	0.15308900

17TSA modelled with PMe₃.-

	B3LYP/6-311+G** Energy + ZPE: -1223.281546.
	B3LYP/6-311+G** Free Energy: -1223.332617.
	B3LYP/6-311+G** Free Energy in Toluene: -1223.341539.
	B3LYP/6-311+G** Free Energy in Toluene (383.15 K): -1223.364055.
` `>>	Number of Imaginary Frequencies: 1 (-301.05)

Р	-3.77929700	-1.21742600	0.36855800
С	-2.47844600	-1.80978400	1.49020400
С	-5.13449800	-0.51473400	1.41331900
С	-4.53333300	-2.63530100	-0.49382200
С	5.77217700	-1.44560700	0.36775600
С	5.55785400	-0.47591400	1.37658700
С	4.39586200	0.25963200	1.40548000
С	3.39024500	0.05858400	0.42330000
С	3.60764600	-0.92176000	-0.59213900
С	4.81569700	-1.66285100	-0.59726600
Ν	2.25378900	0.80569700	0.48743200
С	1.30261200	0.62086200	-0.41634600
С	1.43890900	-0.33479800	-1.46883700
С	2.57849100	-1.08817900	-1.55268300
С	0.11184700	1.50780200	-0.32478500
С	-1.21606300	1.06513100	-0.61806000
С	-2.27552200	1.99890500	-0.52308700
С	-2.04268800	3.31157900	-0.13182700
С	-0.74942600	3.73779500	0.17005400
С	0.30672000	2.83314700	0.07018900
Ν	-1.41701000	-0.27737600	-0.89790000
0	-2.69312800	-0.55734500	-1.15336400
Н	6.69427100	-2.01571800	0.35910900
Н	6.31959100	-0.31404000	2.13125800
Н	4.21637100	1.00583700	2.17076400
Н	4.97415000	-2.40397400	-1.37420700
Н	0.63946000	-0.44872000	-2.18581500
Н	2.70493400	-1.81181200	-2.35191400
Н	-3.27391800	1.67260100	-0.77770400
Н	-2.87307700	4.00789300	-0.07196600
Н	-0.56114000	4.76262900	0.46856300
Н	1.31664800	3.14989900	0.29959300
Н	-2.56390800	-1.32597500	2.46308500
Н	-1.52143300	-1.53257000	1.02672400
Н	-2.51822100	-2.89327900	1.61290500
Н	-4.73716900	0.30238800	2.01587700
Н	-5.55457600	-1.28401800	2.07017500
Н	-5.92296700	-0.12555400	0.76723500
Н	-5.07482000	-3.27884900	0.20385600
Н	-3.74858600	-3.20519200	-0.99137400
Н	-5.22710500	-2.26668900	-1.25255400

	B3LYP/6-31G* Energy + ZPE: -762.012189.
	B3LYP/6-31G* Free Energy: -762.050631.
	B3LYP/6-31G* Free Energy in Toluene:
	-762.054624.
	B3LYP/6-31G* Free Energy in Toluene (383.15 K):
	-762.070339.
19TSC	B3LYP/6-311+G** Energy + ZPE: -762.205884.
	B3LYP/6-311+G** Free Energy: -762.244433.
	B3LYP/6-311+G** Free Energy in Toluene:
	-762.25498.
	B3LYP/6-311+G** Free Energy in Toluene (383.15K):
	-762.265032.
	Number of Imaginary Frequencies: 1 (-304.38)

С	-4.63084000	0.18667000	-0.34580700
С	-4.36209400	-1.21424100	-0.26442500
С	-3.08492800	-1.66601200	-0.04876800
С	-2.00246000	-0.75390300	0.10519600
С	-2.27154400	0.67881900	0.04014300
С	-3.62455200	1.10072300	-0.20108500
Ν	-0.75548800	-1.25044200	0.25092700
С	0.23464600	-0.39082800	0.43055300
С	0.06894000	1.07564700	0.59500900
С	-1.24157100	1.57882600	0.26200100
С	1.61449600	-0.68852100	0.21623300
С	2.34467100	0.51166900	-0.02889600
С	3.73176300	0.49973300	-0.29235700
С	4.36262100	-0.72533600	-0.33424900
С	3.64159400	-1.93435800	-0.12796500
С	2.28460700	-1.92580800	0.13303800
Ν	1.51604600	1.61228700	-0.15569800
0	1.89847300	2.79683400	-0.16167200
Н	-5.64842800	0.52316300	-0.52490400
Н	-5.17878000	-1.92097000	-0.38112300
Н	-2.85371500	-2.72547200	0.00405300
Н	-3.82954400	2.16703000	-0.25698300
Н	0.45270100	1.46479100	1.54789800
Н	-1.43261500	2.64825400	0.28462100
Н	4.25208500	1.43557000	-0.46487300
Н	5.43013700	-0.77457200	-0.53034900
Н	4.17509800	-2.87943600	-0.17557300
Н	1.72928900	-2.84441100	0.29227600

Intermediate B.-

С	4.41322300	-0.24849300	0.00000600
С	3.70066900	-1.45763800	0.00000400
С	2.31241200	-1.46944000	0.00000200
С	1.61262000	-0.24960900	0.00000200
С	2.31550500	0.99236400	0.00000400
С	3.72714000	0.95294400	0.00000600
С	1.60045400	2.23659400	0.00000400
С	0.23486800	2.25583700	0.00000200
С	-0.49011700	1.04579600	0.00000000
Ν	0.21059800	-0.16311100	0.00000000
С	-1.86131700	0.72173400	-0.00000200
С	-1.93708500	-0.69542400	-0.00000300
С	-3.15859300	-1.39584000	-0.00000600
С	-4.30804100	-0.63488600	-0.00000600
С	-4.26019700	0.79032200	-0.00000500
С	-3.06084800	1.47170600	-0.00000300
Ν	-0.67755000	-1.22490500	-0.00000200
0	-0.33827600	-2.45864600	-0.00000300
Н	5.49935200	-0.25504300	0.00000700
Н	4.23478400	-2.40319200	0.00000400
Н	1.75483200	-2.39303900	0.00000100
Н	4.26729500	1.89592900	0.00000700
Н	2.16834400	3.16152600	0.00000500
Н	-0.32205300	3.18682900	0.00000200
Н	-3.16771700	-2.47974300	-0.00000700
Н	-5.27579800	-1.12803200	-0.00000800
Н	-5.19285100	1.34671700	-0.00000600
Н	-3.03547100	2.55752400	-0.0000200

Intermediate A.-

	B3LYP/6-31G* Energy + ZPE: -686.800712.
	B3LYP/6-31G* Free Energy: -686.840338.
	B3LYP/6-31G* Free Energy in Toluene: -686.844595.
	B3LYP/6-31G* Free Energy in Toluene (383.15 K): -686.860698.
Α	B3LYP/6-311+G** Energy + ZPE: -686.970237.
	B3LYP/6-311+G** Free Energy: -687.010053.
	B3LYP/6-311+G** Free Energy in Toluene:
	-687.015138.
	B3LYP/6-311+G** Free Energy in Toluene (383.15K):
	(11) (11)
	-007.001.000
	Number of Imaginary Frequencies: 0

С	-3.55029200	-1.79067800	-0.06574700
С	-2.18668600	-1.46804800	-0.15358600
С	-1.74214700	-0.15907300	-0.04735400
С	-2.74922100	0.91035400	0.10331800
С	-4.15615800	0.53640400	-0.04520400
С	-4.53359900	-0.79286400	0.01746900
Ν	-2.57734100	2.10314500	0.54667300
С	-0.31989700	0.18377100	-0.11950100
Ν	0.54744300	-0.82488100	-0.00755500
С	1.87180600	-0.55096900	0.01284900
С	2.38821500	0.78641300	-0.07441400
С	1.44616000	1.83194200	-0.21226500
С	0.10326000	1.54059900	-0.26047700
С	2.78922200	-1.63484400	0.13292100
С	4.14281500	-1.40075900	0.16140900
С	4.65064300	-0.07677600	0.07471900
С	3.79267000	0.99221000	-0.04216100
Н	-3.84818900	-2.83480300	-0.10889800
Н	-1.44501400	-2.25084000	-0.27468400
Н	-4.87316000	1.34893800	-0.04552300
Н	-5.58539900	-1.06648500	0.03903800
Н	1.79326000	2.85826800	-0.30472200
Н	-0.62831400	2.32567100	-0.41722200
Н	2.37807800	-2.63720300	0.19982000
Н	4.83644200	-2.23213800	0.25284800
Н	5.72422700	0.08729700	0.10332900
Н	4.17660300	2.00736000	-0.10966800

Intermediate C.-

	B3LYP/6-31G* Energy + ZPE: -762.015765.
	B3LYP/6-31G* Free Energy: -762.054569.
	B3LYP/6-31G* Free Energy in Toluene:
	-762.058932
	B3LYP/6-31G* Free Energy in Toluene (383.15 K):
	-762.074867.
С	B3LYP/6-311+G** Energy + ZPE: -762.210429.
	B3LYP/6-311+G** Free Energy: -762.249320.
	B3LYP/6-311+G** Free Energy in Toluene:
	-762.254698.
	B3LYP/6-311+G** Free Energy in Toluene (383.15K):
	-762.270683.
	Number of Imaginary Frequencies: 0

С	-4.60446800	0.22039500	-0.36396000
С	-4.38557900	-1.17447900	-0.12209300
С	-3.12367900	-1.65083600	0.11934300
С	-1.99833000	-0.77660200	0.15388300
С	-2.21981000	0.66454700	-0.05220600
С	-3.56552800	1.10332900	-0.33726600
Ν	-0.76941600	-1.31797900	0.27214000
С	0.25548500	-0.48170900	0.34336400
С	0.11644800	1.01040000	0.52503000
С	-1.16189200	1.54066900	0.01041900
С	1.62861200	-0.74037000	0.14841100
С	2.31718200	0.51727600	0.03215600
С	3.70839300	0.59355900	-0.22067600
С	4.38830100	-0.59315300	-0.34931400
С	3.72240300	-1.85572700	-0.23874400
С	2.36930400	-1.93825800	0.00031000
Ν	1.44123000	1.55638800	0.10406900
0	1.67697800	2.79380800	0.01147100
Н	-5.61229000	0.57228200	-0.56670900
Н	-5.23069900	-1.85662400	-0.14453300
Н	-2.93342300	-2.70774600	0.27876700
Н	-3.73173000	2.16397800	-0.50893400
Н	0.16851300	1.24558300	1.60678800
Н	-1.27320600	2.60708700	-0.16061500
Н	4.18768900	1.56201500	-0.30954300
Н	5.45761100	-0.58126100	-0.54074600
Н	4.30638400	-2.76473800	-0.35063300
Н	1.86157900	-2.89414400	0.07899000

Quindoline (1).-

4 4 <i>7</i>	B3LYP/6-31G* Energy + ZPE: -686.940400.
	B3LYP/6-31G* Free Energy: -686.977819.
	B3LYP/6-31G* Free Energy in Toluene:
	-686.818220.
Ţ	B3LYP/6-31G* Free Energy in Toluene (383.15 K): -686.997547.
1	
Ĩ	B3LYP/6-311+G** Energy + ZPE: -687.109936.
	B3LYP/6-311+G** Free Energy: -687.147472.
	B3LYP/6-311+G** Free Energy in Toluene:
	-687.152319.
	B3IVP/6-311+G** Free Energy in Toluene
	(202.45K); C07.4C750
	(383.15K): -087.10759.
	Number of Imaginary Frequencies: 0

С	-4.56391000	0.19643100	-0.00001100
С	-4.26032800	-1.18909200	0.00005200
С	-2.95196700	-1.61271900	0.00004500
С	-1.88097800	-0.67740400	0.00000000
С	-2.18945200	0.73134700	-0.00003700
С	-3.55395000	1.13068600	-0.00005500
Ν	-0.60671500	-1.15920700	0.00000100
С	0.36267600	-0.26616800	-0.00001700
С	0.15349100	1.16160800	0.00000000
С	-1.12418900	1.66745000	-0.00001300
С	1.80047600	-0.47399200	-0.00001600
С	2.60310500	-1.61737200	-0.00004500
С	3.98746500	-1.46488700	-0.00003500
С	4.56513900	-0.18331200	0.00001400
С	3.78299300	0.97160100	0.00004100
С	2.39681200	0.81111500	0.00001800
Н	-5.60157900	0.51915000	-0.00002900
Н	-5.06859700	-1.91525300	0.00010500
Н	-2.69157700	-2.66670900	0.00007500
Н	-3.78610100	2.19350300	-0.00009000
Н	-1.33222300	2.73486100	0.00000200
Н	4.62920000	-2.34104400	-0.00006400
Н	5.64753600	-0.08657200	0.00003300
Н	4.23936600	1.95770000	0.00008200
Н	2.14213600	-2.60048800	-0.0008000
Н	1.54998200	2.77228600	-0.00010800
Ν	1.39351100	1.77646600	0.00006000

Indazolo[2,3-a]quinoline (18).-

4	B3LYP/6-31G* Energy + ZPE: -686.914461.
	B3LYP/6-31G* Free Energy: -686.951543.
	B3LYP/6-31G* Free Energy in Toluene -686.954645.
	B3LYP/6-31G* Free Energy in Toluene (383.15 K): -686.969643.
je start st	B3LYP/6-311+G** Energy + ZPE: -687.080783.
<u>ن</u>	B3LYP/6-311+G** Free Energy: -687.117972.
18	B3LYP/6-311+G** Free Energy in Toluene: -687.121417.
	B3LYP/6-311+G** Free Energy in Toluene (383.15K): -687.136532.
	Number of Imaginary Frequencies: 0

С	4.34494700	-0.43798500	0.00001400
С	3.60228800	-1.63435600	0.00000900
С	2.21784400	-1.60513000	-0.00000300
С	1.55910200	-0.36542600	-0.00000500
С	2.28254200	0.85666100	-0.00000100
С	3.69412900	0.78219700	0.00000800
Ν	0.16740300	-0.29455400	-0.00002200
С	-0.52203800	0.90908000	-0.00000800
С	0.20639500	2.12584000	-0.00000600
С	1.57181600	2.10400500	-0.00000300
С	-1.88706300	0.54983800	-0.00000300
С	-1.87742900	-0.88251000	-0.00000500
С	-3.09579100	-1.60461100	0.00000200
С	-4.27164400	-0.88602900	0.00001100
С	-4.28204800	0.53813100	0.00001200
С	-3.10682900	1.26067800	0.00000500
Ν	-0.62219400	-1.38906200	-0.00001400
Н	5.43051300	-0.47459100	0.00002100
Н	4.11750800	-2.59060700	0.00001300
Н	1.62359800	-2.51083100	-0.00000900
Н	4.26224700	1.70897800	0.00001100
Н	-0.34484100	3.06065100	-0.0000200
Н	2.14155100	3.02853300	0.00000300
Н	-3.08628400	-2.69002700	0.00000000
Н	-5.22110900	-1.41505300	0.00001700
Н	-5.23568200	1.05841100	0.00001800
Н	-3.12129400	2.34754000	0.00000600

Triphenylphosphine.-

Р	0.00001100	0.00025900	-1.20670500
С	1.59595200	0.49386200	-0.40243500
С	2.33813600	1.50620300	-1.03403000
С	2.11799500	-0.09288800	0.76036600
С	3.55631100	1.93539100	-0.50778100
Н	1.95911900	1.95729900	-1.94828500
С	3.34340800	0.32860000	1.28122000
Н	1.56791200	-0.88505200	1.25918500
С	4.06352700	1.34501000	0.65165800
Н	4.11419900	2.72239300	-1.00858300
Н	3.73456800	-0.13872400	2.18146700
Н	5.01745100	1.67080200	1.05794500
С	-0.37092800	-1.62887000	-0.40296900
С	-1.14046400	-1.78775500	0.75969500
С	0.13553500	-2.77771200	-1.03401700
С	-1.38668900	-3.05969200	1.28134500
Н	-1.55282400	-0.91553300	1.25786400
С	-0.10068700	-4.04723700	-0.50709300
Н	0.71576300	-2.67514000	-1.94825800
С	-0.86512100	-4.19136200	0.65264700
Н	-1.98698100	-3.16488800	2.18158100
Н	0.30273500	-4.92378200	-1.00742000
Н	-1.05871600	-5.18028500	1.05974600
С	-1.22572300	1.13551100	-0.40288000
С	-2.47505600	1.26850200	-1.03217100
С	-0.97738000	1.88396700	0.75775600
С	-3.45614600	2.10838300	-0.50577800
Н	-2.67728600	0.71201200	-1.94454800
С	-1.95551600	2.73393100	1.27875300
Н	-0.01513800	1.80605700	1.25482900
С	-3.19729600	2.84590100	0.65147100
Н	-4.41788200	2.19517700	-1.00471400
Н	-1.74552700	3.30865400	2.17732900
Н	-3.95671700	3.50867600	1.05789900

Triphenylphosphine Oxide.-

Р	-0.00029200	0.00072500	0.91438300
С	-1.63849900	0.42882100	0.21516000
С	-2.47873700	1.21691100	1.01575000
С	-2.08361800	0.01185400	-1.04756000
С	-3.73732500	1.59771200	0.55060200
Н	-2.14265700	1.50917200	2.00621900
С	-3.34270100	0.39693900	-1.51114100
Н	-1.45882100	-0.62901700	-1.66361400
С	-4.16847700	1.19239700	-0.71437100
Н	-4.38382900	2.20587900	1.17760300
Н	-3.68199000	0.06753900	-2.48966700
Н	-5.15020100	1.48776000	-1.07522800
С	0.44755000	-1.63210700	0.21488600
С	1.02675100	-1.80915400	-1.04989000
С	0.18915900	-2.75359700	1.01697100
С	1.32207700	-3.09200300	-1.51416100
Н	1.26644500	-0.94749800	-1.66689900
С	0.48785100	-4.03391500	0.55113700
н	-0.22822100	-2.60834700	2.00896900
С	1.04982100	-4.20476700	-0.71590400
Н	1.77348000	-3.22113300	-2.49431700
Н	0.28740400	-4.89780100	1.17922300
н	1.28424900	-5.20264100	-1.07719600
С	1.19023800	1.20454200	0.21473300
С	2.29425700	1.53566100	1.01444000
С	1.05180700	1.79929400	-1.04766100
С	3.25479800	2.43336200	0.54878600
н	2.37936400	1.09781900	2.00460800
С	2.01615200	2.69557300	-1.51161900
Н	0.18362300	1.58045000	-1.66329500
С	3.11931800	3.01037700	-0.71576000
Н	4.10591700	2.68700400	1.17506400
н	1.90050600	3.15479800	-2.48982500
Н	3.86705800	3.71154700	-1.07697500
0	-0.00006000	0.00077600	2.41790000

Trimethylphosphine.-

Р	-0.00005100	-0.00036900	-0.59820100
С	0.11733900	1.63794700	0.27738800
С	-1.47776000	-0.71721600	0.27743000
С	1.36044100	-0.92032400	0.27763100
Н	0.11095900	1.52889900	1.36669300
Н	-0.72268200	2.27073200	-0.01928600
Н	1.03765200	2.14568700	-0.02138200
Н	-2.37725000	-0.17378500	-0.02197100
Н	-1.38043300	-0.66773200	1.36668600
Н	-1.60612200	-1.76110000	-0.01900800
Н	1.27046800	-0.85869300	1.36692600
Н	2.32802500	-0.50932400	-0.02056100
Н	1.34003200	-1.97159100	-0.01977300

Trimethylphosphine oxide.-

-0.00009600	-0.00020300	0.17446200
-1.37901900	-0.95332000	-0.55110700
1.51548300	-0.71670900	-0.55117500
-0.13663000	1.67136000	-0.54954700
-1.31565200	-1.98806600	-0.20879800
-1.35150700	-0.93154400	-1.64293400
-2.32442800	-0.53082100	-0.20529500
1.48426000	-0.70288800	-1.64310100
1.62296300	-1.74704000	-0.20639500
2.37926400	-0.14423200	-0.20752900
-1.06300800	2.13466900	-0.20430900
-0.13480400	1.63784000	-1.64149200
0.70355200	2.27781100	-0.20563800
0.00022300	-0.00133300	1.68244200
	-0.0009600 -1.37901900 1.51548300 -0.13663000 -1.31565200 -1.35150700 -2.32442800 1.48426000 1.62296300 2.37926400 -1.06300800 -0.13480400 0.70355200 0.00022300	-0.0009600-0.0020300-1.37901900-0.953320001.51548300-0.71670900-0.136630001.67136000-1.31565200-1.98806600-1.35150700-0.93154400-2.32442800-0.530821001.48426000-0.702888001.62296300-1.747040002.37926400-0.14423200-1.063008002.13466900-0.134804001.637840000.703552002.277811000.00022300-0.00133300