Synthesis, crystal structure and immobilization of a new cobalt (II) complex with 2,4,6-tris(2-pyridyl)-1,3,5-triazine ligand on modified magnetic nanoparticles as a catalyst for the oxidation of alkanes

Zahra Azarkamanzad, a Faezeh Farzaneh,*a Mahboobeh Maghami a and Jim Simpson b

Supporting information:

Materials and instrumentation

All materials were of commercial reagent grade and used without further purification. FTIR spectra were recorded on a Bruker Tensor 27 FT-IR spectrometer using KBr pellets over the range of 4,000–400 cm⁻¹. Raman spectra were measured on a **NRS-4100** Dispersive Raman spectrometer equipped with 633 nm argon ion laser. Elemental analyses were performed on a Heraeus CHN-O-Rapid elemental analyzer. The amount of cobalt and iron in the Fe₃O₄@SiO₂@APTMS@ [Co(tptz)Cl₂]. 2H₂O nanocatalyst was determined by atomic absorption spectroscopy (AAS) with a GBC flame spectrophotometer (0.30% (2988 ppm) Co, 77.64 % Fe). Magnetic susceptibility measurements were carried out using a vibrating sample magnetometer (VSM) (BHV-55, Riken, Japan) in the magnetic field range of -8000 to 8000 Oe at room temperature. TGA/DSC (Thermogravimetric analysis & Differential Scanning Calorimetry) were recorded on a METTLER TOLEDO instrument using 12 mg of [Co(tptz)Cl₂]. 2H₂O. The X-ray powder diffraction (XRD) data were recorded on a Siefert XRD 3003 PTS diffractometer, using Cu Kα1 radiation (k = 1.5406 Å). X-ray photoelectron spectroscopy (XPS) measurements were carried out with a Thermo Scientific, ESCALAB 250Xi using an Mg X-ray source. Scanning electron microscopy (SEM) images were taken by KYKY-EM3200-26 KV. Transmission electron microscopy (TEM) images were taken by Zeiss-EM10C-100 KV. Energy Dispersive X-Ray Analysis (EDX) were recorded on a VEGA3 LMU analysis was performed by TESCAN Company. Data oxidation products were analyzed by GC and GC-Mass using Agilent 6890 series with a FID detector, HP-5, 5% phenylmethylsiloxane capillary and Agilent 5973 network, mass selective detector, HP-5 MS 6989 network GC system, respectively.

Characterization Fe $_3O_4$, Fe $_3O_4@SiO_2$ and Fe $_3O_4@SiO_2@APTMS$

FT-IR spectra:

Observation of a broad band in the spectrum of Fe₃O₄ with relatively low intensity centered at 3400 cm⁻¹ to 1600 cm⁻¹ should be attributed either to Fe-OH group surface, or stretching and bending vibrations of the adsorbed water (Figure S3a). The stretching vibration of Fe-O also appears at 580 cm⁻¹. The band appears at 1050 cm⁻¹ due to Si-O stretching demonstrates the presence of SiO₂ components (Figure S3b) [1,2]. After functionalizing of silica coated magnetic nanoparticles with APTMS, a new bands appeared at 2858-2922 cm⁻¹ due to the N-H and C-H stretching vibrations [3].

Figure S1. The distorted square pyramidal coordination sphere of complex 1.

Figure S2. Inversion related π ... π stacking interactions between adjacent complex 1 molecules, shown as green dotted lines with ring centroids shown as coloured spheres.

Figure S3. The FT-IR spectra of (a) Fe₃O₄, (b) Fe₃O₄@SiO₂, (c) Fe₃O₄@SiO₂@APTMS.

Figure S4. XRD pattern for(a) Fe₃O₄, (b) Fe₃O₄@SiO₂, (c) Fe₃O₄@SiO₂@APTMS (d) Fe₃O₄@SiO₂@APTMS@complex 1 (catalyst B) before using and (e) after using as catalyst.

 $\label{eq:Figure S5.} Scanning \ electron \ microscopy \ (SEM) \ images \ of \ nanoparticles \ Fe_3O_4 @SiO_2 @APTMS @complex 1 \ (catalyst \ B) \ and \ B) \ and \ B)$

D—H…A	D—H	HA	DA or CgCg	< D—HA
O1W-H1WCl1 ¹	0.85(16)	2.37(16)	3.164(18)	155(15)
02W-4W01W ²	0.86(18)	2.10(15)	2.79(2)	136(1)
C5—H5Cl2 ³	0.95	2.80	3.745(18)	172
C9—H9O2W ⁴	0.95	2.57	3.51(2)	170
C11—H11Cl2 ⁵	0.95	2.76	3.674(17)	162
C18—H18O2W ⁴	0.95	2.38	3.29(2)	161
Cg3Cg6 ⁶			3.794(9)	

 Symmetry operations: 1 = 1+x, y, z; 2 = 2-x, 2-y, 1-z; 3 = 1-x, 1-y, -z; 4 = x, 1+y, z; 5 = -x, 2-y, -z; 6 = 2-x, 3-y, 1-z Cg3 and Cg6 are the centroids of the N1, C1, N2, C13, N3,

 C7
 and
 N6,
 C14-C18
 rings
 respectivel

Table S2. Comparison the catalytic activity of [Co(tptz)Cl₂]. 2H₂O (catalyst A) with some soluble cobalt salts for flourene oxidation

Entry	Catalyst ^a	Substrate	Conversion (%)	Selectivity (%)	TON
1	[Co(tptz)Cl ₂]. 2H ₂ O (catalyst A)	Flourene	99	100	10
2	Co(OAC)2.4H2O	Flourene	53	76	3
3	Co(acac) ₂	Flourene	47	73	2

^a Reaction conditions: catalyst, (50mg), substrate (1mmol), TBHP (1.2 mmol), solvent (acetonitrile, 5 mL, reflux at 80 °C), time (10 h).

GC-Mass analysis:

1. Fluorene

Entry	retention time (min.)	Compund
1	1.54	Acetonitrile
2	2.12	Ditertbutylperoxide
3	8.92	Fluorene
4	9.71	Fluorene-one

2. Diphenylmethane

Entry	retention time (min.)	Compund
1	7.72	Diphenylmethane
2	9.00	Benzophenone

3. Ethyl benzene

Entry	retention time (min.)	Compund
1	3.20	Ethyl benzene
2	4.07	Benzaldehyde
3	4.97	Acetophenone

4. Cyclooctane

	Entry	retention time (min.)	Compund
	1	3.71	Cyclooctane
	2	5.40	Cyclooctanone
	3	5.64	Cyclooctanol
ſ	4	6.440	Cyclooctane dione

5. Adamantane

Entry	retention time (min.)	Compund
1	5.13	Adamantane
2	6.49	Adamantanol
3	6.98	Adamantanone

How to calculate TON:

Homogeneous catalyst

1) Catalyst A: [Co(tptz)Cl₂]. 2H₂O (MW.= 478.20)

1mmol Catalyst A ([Co(tptz)Cl₂]. 2H₂O) = 1mmol Co(II) (active site)

So:

50 mg Catalyst A = 0.104 mmol Catalyst A = 0.104 mmol Co(II)

2) for example: 1mmol of flourene substrate, conversion= 99%

mmol of product= 0.99

3) TON= mmol of product/ mmol of cobalt present in catalyst= 0.99/0.104= 9.52

Heterogeneous catalyst:

1) Fe₃O₄@SiO₂@APTMS@complex (catalyst B), Co(II) content of catalyst B was 0.3%

So:

- **70 mg Catalyst B** = 0.21 mg Co(II) = **3.56** × **10**⁻³ mmol Co(II)
- 2) for example: 1mmol of flourene substrate, conversion= 42%

mmol of product= 0.42

3) TON= mmol of product/ mmol of cobalt present in catalyst = $0.42/3.56 \times 10^{-3} = 118$

References

- [1] X. Liu, Z. Ma, J. Xing, H. Liu, J. Magn. Magn. Mater., 2004, **270**,1.
- [2] J. Wang, S. Zheng, Y. Shao, J. L. Liu, Z. Xu, D. Zhu, J. Colloid Interface Sci., 2010, 349, 293.
- [3] S. Shylesh, W. R. Thiel, V. Schunemann, Angew. Chem. Int., 2010, 49, 3428.