Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

Supporting information

T.S. Sukhikh^{a,b*}, D.S. Kolybalov^{a,b}, E.K. Pylova^{a,b}, D.A. Bashirov^{a,b}, V.Y. Komarov^{a,b}, N.V. Kuratieva^{a,b}, A.I. Smolentsev^a, A.N. Fitch^c, S.N. Konchenko^{a,b}

^a Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia.

^b Department of Natural Sciences, National Research University – Novosibirsk State University, 630090 Novosibirsk, Russia

^c European Synchrotron Radiation Faculty, B.P. 220, Grenoble CEDEX, France

* Email address <u>sukhikh@niic.nsc.ru</u>

Fig. S1. Typical IR spectra of the complexes $[Ln_5(dbm)_{10}(OH)_5]$ (**[Ln₅]**) on the example of Ln = Sm; $[Ln_4(dbm)_{10}(OH)_2]$ (**[Ln₄]**), $[K(Me_2CO)Ln(dbm)_4]_2$ (**[KLn₂]**), $[KLn(dbm)_4]_n$ (**[KLn]**_n) and $[Ln(dbm)_3(H_2O)]$ (**[Ln]**) on the example of Ln = Eu. The most notable band difference is marked with asterisk. In the spectrum of $[K(Me_2CO)Ln(dbm)_4]_2$, the band at 1702 cm⁻¹ corresponds to coordinated acetone.

Compound	[Dy(dbm) ₃ (H ₂ O)]	[KYb(dbm) ₄] _n ·2nCH ₂ Cl ₂	[KEu(dbm)₄] _n ·2nCH₂Cl₂	[KEu(dbm)₃(OBz)] _n	[K(Me ₂ CO)Dy(dbm) ₄] ₂	[K(Me ₂ CO)Eu(dbm) ₄] ₂	[Nd ₃ (dbm) ₈ (OH)(H ₂ O)] ·3.5C ₇ H ₈	$[Nd_4(dbm)_{10}(OH)_2]$ ·C ₇ H ₈	$[Sm_5(dbm)_{10}(OH)_5]$ $\cdot 3.5CH_2Cl_2$
Empirical formula	C ₄₅ H ₃₅ DyO ₇	C ₆₂ H ₄₈ Cl ₄ KO ₈ Yb	C ₆₂ H ₄₈ Cl ₄ EuKO ₈	C ₅₂ H ₃₈ EuKO ₈	C ₁₂₆ H ₁₀₀ Dy ₂ K ₂ O ₁₈	C ₁₂₆ H ₁₀₀ Eu ₂ K ₂ O ₁₈	$C_{144.5}H_{116}Nd_{3}O_{18}$	C ₁₅₇ H ₁₂₀ Nd ₄ O ₂₂	$C_{153.5}H_{122}Cl_7O_{25}Sm_5$
Formula weight	850.23	1274.94	1253.86	981.88	2305.25	2284.17	2573.09	2935.47	3366.40
Temperature/K	298(2)	150(2)	150(2)	150(2)	150(2)	150(2)	100(2)	150(2)	150(2)
Space group	R3	C2/c	C2/c	P21/c	C2/c	C2/c	P-1	P-1	P21/c
a/Å	22.7056(10)	28.0739(8)	27.8136(7)	13.6797(4)	28.8124(5)	28.829(3)	17.301(3)	15.0415(5)	22.1650(11)
b/Å	22.7056(10)	7.8185(2)	7.8790(2)	13.7983(3)	28.9292(5)	28.898(3)	18.304(3)	15.0538(6)	17.4192(6)
c/Å	6.3514(3)	25.6588(7)	25.9138(6)	23.4521(6)	26.2157(5)	26.326(2)	21.227(4)	16.1542(6)	36.6500(18)
α/°	90	90	90	90	90	90	68.498(4)	78.7490(10)	90
β/°	90	108.7876(8)	108.8290(10)	102.9380(10)	104.6080(10)	104.501(3)	77.063(4)	66.6210(10)	100.372(2)
γ/°	120	90	90	90	90	90	76.663(5)	74.1200(10)	90
Volume/Å ³	2835.7(3)	5331.9(3)	5374.9(2)	4314.36(19)	21144.9(7)	21234(3)	6013.0(19)	3213.8(2)	13919.2(11)
Z	3	4	4	4	8	8	2	1	4
ρ _{calc} g/cm ³	1.494	1.588	1.549	1.512	1.448			1.516	1.606
µ/mm⁻¹	2.028	2.090	1.501	1.607	1.551			1.661	2.282
F(000)	1281.0	2564.0	2536.0	1984.0	9360.0			1476.0	6688.0
20 range for data collection/°	6.216 to 51.618	3.064 to 59.58	3.094 to 55.178	3.448 to 57.586	2.028 to 57.524			3.022 to 54.39	2.992 to 51.364
Index ranges	-27 ≤ h ≤ 27, -27 ≤ k ≤ 27, -5 ≤ l ≤ 7	-34 ≤ h ≤ 38, -10 ≤ k ≤ 10, -35 ≤ l ≤ 35	-27 ≤ h ≤ 36, -8 ≤ k ≤ 10, -33 ≤ l ≤ 33	-18 ≤ h ≤ 18, -12 ≤ k ≤ 18, -31 ≤ l ≤ 31	-37 ≤ h ≤ 38, -39 ≤ k ≤ 36, -35 ≤ l ≤ 35			-19 ≤ h ≤ 11, -19 ≤ k ≤ 19, -20 ≤ l ≤ 16	-26 ≤ h ≤ 27, -21 ≤ k ≤ 20, -44 ≤ l ≤ 44
Reflections collected	5976	22144	17168	75372	136904			25267	107404
Independent reflections	2087 [R _{int} = 0.0354]	7506 [R _{int} = 0.0259]	6210 [R _{int} = 0.0229]	11216 [R _{int} = 0.0275]	27414 [R _{int} = 0.0394]			14199 [R _{int} = 0.0248]	26411 [R _{int} = 0.0496]
restraints/parameters	49/160	0/344	0/344	0/559	0/1341			145/832	1428/1861
Goodness-of-fit on F ²	1.058	1.086	1.047	1.053	1.033			1.027	1.159
Final R indexes [I>=2σ (I)]	$R_1 = 0.0236,$ w $R_2 = 0.0587$	$R_1 = 0.0303,$ w $R_2 = 0.0717$	$R_1 = 0.0245,$ w $R_2 = 0.0582$	$R_1 = 0.0199,$ w $R_2 = 0.0460$	$R_1 = 0.0274,$ w $R_2 = 0.0598$			$R_1 = 0.0446,$ w $R_2 = 0.1057$	$R_1 = 0.0704,$ w $R_2 = 0.1453$
Final R indexes [all data]	$R_1 = 0.0236,$ w $R_2 = 0.0587$	$R_1 = 0.0405,$ w $R_2 = 0.0759$	$R_1 = 0.0305,$ w $R_2 = 0.0613$	$R_1 = 0.0240,$ w $R_2 = 0.0483$	$R_1 = 0.0376,$ w $R_2 = 0.0654$			$R_1 = 0.0720,$ w $R_2 = 0.1224$	$R_1 = 0.1040,$ w $R_2 = 0.1668$
Largest diff. peak/hole / e Å ⁻³	0.55/-0.38	1.06/-1.17	0.93/-0.60	0.59/-0.49	1.30/-1.20			1.67/-1.19	3.41/-1.82

Table S1. Crystallographic data of the complexes. Due to poor data quality for $[Nd_3(dbm)_8(OH)(H_2O)]\cdot 3.5C_7H_8$ and $[K(Me_2CO)Eu(dbm)_4]_2$, only the unit cell parameters are listed.

Table S2. Average Ln–O and K–O bond lengths with standard deviation in the complexes, Å. Chel. abbreviation is for chelate dbm⁻, chel.-br. – for chelate-bridging, bis-chel.-br. – for bis-chelate-bridging ones.

Compound	Ln–OH _x *	Ln–O (chel.)	Ln–O (chel	Ln–O (bis-	К-О
			br.)	chelbr.)	
[Dy(dbm) ₃ (H ₂ O)]	2.415(8)	2.30(1)	-	-	-
[KYb(dbm) ₄] _n ·2nCH ₂ Cl ₂	-	2.32(3)	-	-	2.94(2)
[KEu(dbm) ₄] _n ·2nCH ₂ Cl ₂	-	2.40(3)	-	-	2.91(1)
[KEu(dbm)₃(OBz)] _n	-	2.38(3)	-	-	2.76(6)
[K(Me ₂ CO)Dy(dbm) ₄] ₂	-	2.35(4)	-	-	2.66(9)
[Nd ₄ (dbm) ₁₀ (OH) ₂]·C ₇ H ₈	2.44(2)	2.37(2)	2.44(2)	2.54(3)	-
	2.41(4)	2.35(2)	2.43(5)	-	_
	2.63(7)**				

* x = 1, 2

** the first distance is for μ_3 -OH, the second one is for μ_4 -OH.

Fig. S2. Experimental (top) and simulated (bottom) powder XRD patterns for the complexes $[Ln(dbm)_3(H_2O)]$ on the example of Ln = Eu.

Fig. S3. Experimental (top) and simulated (bottom) powder XRD patterns for the complexes $[KLn(dbm)_4]_n$ on the example of Ln = Dy.

Fig. S4. Experimental (top) and simulated (bottom) powder XRD patterns for the complexes $[K(Me_2CO)Ln(dbm)_4]_2$ on the example of Ln = Dy.

Fig. S5. Experimental powder XRD patterns for $[K(Me_2CO)Ln(dbm)_4]_2$ (**[KLn_2]**), the mixture of products $[K(Me_2CO)Ln(dbm)_4]_2$ and $[KEu(dbm)_3(OBz)]_n$ (**[KLn_2] + [KEuOBz]**) and simulated one for $[KEu(dbm)_3(OBz)]_n$ (**[KEuOBz]**). The most notable peaks referred to $[KEu(dbm)_3(OBz)]_n$ marked with asterisk.

Fig. S6. Crystal packing of the complexes $[Nd_4(dbm)_{10}(OH)_2]$, top (V. Baskar, P.W. Roesky, Z. Anorg. Allg. Chem., 631 (2005) 2782-2785) and $[Nd_4(dbm)_{10}(OH)_2] \cdot C_7 H_8$ obtained in this work, bottom. Solvate toluene molecules are shown in space-filling model (red).

Fig. S7. Experimental and simulated powder XRD patterns for the complexes $[Ln_4(dbm)_{10}(OH)_2]$ on the example of Ln = Eu.

Fig. S8. Experimental (top) and simulated (bottom) powder XRD patterns for the complexes $[Ln_5(dbm)_{10}(OH)_5]$ (*P4/n* space group) on the example of Ln = Yb.

Fig. S9. Experimental (top) and simulated (bottom) powder XRD patterns for the complexes $[Ln_5(dbm)_{10}(OH)_5]$ (*P*2₁/*c* space group) on the example of Ln = Sm.

Fig. S10. Experimental powder XRD patterns for all of the types of the complexes, *viz*. $[Ln_5(dbm)_{10}(OH)_5]$ ([Ln₅]), $[Ln_4(dbm)_{10}(OH)_2]$ ([Ln₄]), $[K(Me_2CO)Ln(dbm)_4]_2$ ([KLn₂]), $[KLn(dbm)_4]_n$ ([KLn]_n) and $[Ln(dbm)_3(H_2O)]$ ([Ln]).

Fig. S11. High-resolution powder XRD patterns of the complexes $[Er_5(dbm)_{10}(OH)_5]$ (Er_5), $[Yb_5(dbm)_{10}(OH)_5]$ (Yb_5), $[Er_{1.2}Yb_{3.8}(dbm)_{10}(OH)_5]$ ($Er_{1.2}Yb_{3.8}$) and $[Er_{2.0}Yb_{3.0}(dbm)_{10}(OH)_5]$ ($Er_{2.0}Yb_{3.0}$). Detailed view of the peaks (2 0 0) and (0 0 2) is in the inset. Vertical lines show position of the reflections defined by Pawly method.

Fig. S12. Single-crystal diffraction pattern of the complex $[Nd_3(dbm)_8(OH)(H_2O)] \cdot 3C_7H_8$ in reciprocal space showing Bragg reflections (highlighted in green circles) and the satellites.