Supporting Information for New Journal of Chemistry

Rapid access to sulfate-encapsulated symmetrical and asymmetrical capsules based on silver-pyrazole complex cations

Chang-Chuan Chou,* Yu-Ting Lai, Chia-Chi Yang and Ting-Sen Kuo

Contents

1. General information (Table S1)
2. Synthesis of complex $\left[\mathrm{Ag}_{2}\left(\mathrm{~L}^{1}\right)_{4}\left(\mathrm{SO}_{4}\right)\right]$ (1)
3. Synthesis of complex $\left[\mathrm{Ag}_{2}\left(\mathrm{~L}^{2}\right)_{5}\left(\mathrm{SO}_{4}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$ (2)
4. Synthesis of $\left[\mathrm{Ag}_{2}\left(\mathrm{~L}^{3}\right)_{6}\left(\mathrm{SO}_{4}\right)\right]$ (3)
5. Synthesis of complex $\left[\mathrm{Cu}_{2}\left(\mathrm{~L}^{3}\right)_{6}\left(\mathrm{SO}_{4}\right)\right]$ (4)
6. The 1-D polymeric array of complex 1 (Figure S2)
7. The hydrogen bonds and dative bonds around disordered sulfate for complex $\mathbf{2}$ (Figure S3)
8. IR spectrum of complex 1 (Figure S4)
9. IR spectrum of complex 2 (Figure S5)
10. IR spectrum of complex 3 (Figure S6)
11. IR spectrum of complex 4 (Figure S7)
12. ${ }^{1} \mathrm{H} \&{ }^{13} \mathrm{C}$ NMR spectra of complex 1 (Figure S8)
13. ${ }^{1} \mathrm{H} \&{ }^{13} \mathrm{C}$ NMR spectra of complex 2 (Figure S9)
14. ${ }^{1} \mathrm{H} \&{ }^{13} \mathrm{C}$ NMR spectra of complex 3 (Figure S10)
15. ${ }^{1} \mathrm{H} \&{ }^{13} \mathrm{C}$ NMR spectra of complex 4 (Figure S11)
16. ESI-MS of complex 1 (Figure S12)
17. ESI-MS of complex 2 (Figure S13)
18. ESI-MS of complex $\mathbf{3}$ (Figure S14)
19. ESI-MS of complex 4 (Figure S15)
20. PXRD of complex 2 (Figure S16)
21. PXRD of complex 3 (Figure S17)
22. PXRD of complex 4 (Figure S18)
23. TGA of complex 1 (Figure S19)
24. TGA of complex 2 (Figure S20)
25. TGA of complex 3 (Figure S21)
26. TGA of complex 4 (Figure S22)

1. General information

The preparation of complexes $\mathbf{1 \sim 3}$ were carried out under air atmosphere whereas complex $\mathbf{4}$ was prepared under a nitrogen atmosphere using standard Schlenk technique. Dichloromethane were distilled from CaH_{2} before use. Diethyl ether was dried by distillation from sodium benzophenone prior to use. Other reagents were obtained from commercial suppliers and used as received without further purification. The ligands $L^{1} \sim L^{3}$ were prepared according to literature procedures. Infrared spectra were recorded on a Bruker Alpha-T FTIR spectrometer as Nujol mulls. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were obtained at room temperature using Bruker Avance 600 MHz spectrometers. Mass spectra were acquired on a Finnigan TSQ 700 spectrometer. Elemental analyses were performed on a HERAEUS CHN-O-S-Rapid elemental analyzer by Instruments Center, National Chung Hsin University. Powder X-ray diffraction (PXRD) data were recorded on a Bruker D8 ADVANCE X-ray powder diffractometer. TGA data were recorded by Instruments Center, National Tsing Hua University.

X-ray Crystallographic Analysis of 1-4.

Crystal data collection and processing parameters are given in Table S1. Diffraction data were carried out on a Bruker APEX2 CCD diffractometer with graphite monochromated Mo-K α radiation $(\lambda=0.7107 \AA)$. The structures $1-4$ were solved by direct methods and refined by full-matrix least-squares procedures using the SHELXL-97 program. All of the non-hydrogen atoms were refined with anisotropic temperature factors. All hydrogen atoms were located geometrically and refined in the riding mode. For complex 2, the crystal structure is disordered at the O2, O3, O4, C37, C38, C53, C54, and C55 positions: a refined occupancy ratios of $0.70: 0.30$ for O2O4 atoms, $0.50: 0.50$ for C37 and C38 atoms, and $0.54: 0.46$ for C53-C55. For complex 4, the SQUEEZE option in Platon was used without the contribution of solvent molecules, leading to the presence of solvent accessible void, to refine the structure. A Platon void calculation for the solvent free form gave a total potential solvent volume of $269 \AA^{3}(3.3 \%)$ which is roughly in agreement with half solvated dichloromethane (2.7\%). Additional crystallographic data as CIF files are available as Supporting Information.

Table S1 X-ray crystallographic data for complexes $\mathbf{1 - 4 .}$

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
Empirical Formula	$\mathrm{C}_{96} \mathrm{H}_{112} \mathrm{~N}_{16} \mathrm{Ag}_{4} \mathrm{~S}_{2} \mathrm{O}_{8}$	$\mathrm{C}_{55} \mathrm{H}_{102} \mathrm{~N}_{10} \mathrm{Ag}_{2} \mathrm{SO}_{5}$	$\mathrm{C}_{90} \mathrm{H}_{72} \mathrm{~N}_{12} \mathrm{Ag}_{2} \mathrm{SO}_{4}$	$\mathrm{C}_{90} \mathrm{H}_{72} \mathrm{~N}_{12} \mathrm{Cu}_{2} \mathrm{SO}_{4}$
Formula weight	2113.62	1231.27	1633.40	1544.74
$T(\mathrm{~K})$	$200(2)$	$200(2)$	$200(2)$	$200(2)$
$\lambda(\AA)$	0.71073	0.71073	0.71073	0.71073
Crystal system	Triclinic	Triclinic	Monoclinic	Monoclinic
Space group	$P \overline{1}$	$P_{\overline{1}}$	$P 2_{1} / \mathrm{n}$	$C 2 / \mathrm{c}$
$a(\AA)$	$9.384(3)$	$11.6173(4)$	$12.1323(5)$	$21.6261(11)$
$b(\AA)$	$15.712(6)$	$14.1867(5)$	$17.6149(6)$	$13.7166(6)$
$c(\AA)$	$17.847(7)$	$20.5791(5)$	$35.9629(14)$	$29.3214(11)$
$\alpha\left({ }^{\circ}\right)$	$65.553(12)$	$95.8130(10)$	90	90
$\beta\left({ }^{\circ}\right)$	$86.379(10)$	$105.9260(10)$	$91.7810(10)$	$107.5170(10)$
$\gamma\left({ }^{\circ}\right)$	$80.780(11)$	$94.0010(10)$	90	90
$V\left(\AA^{3}\right)$	$2364.4(15)$	$3227.79(18)$	$7681.9(5)$	$8294.5(6)$
Z	1	2	4	4
D calc $\left(\right.$ Mg m $\left.{ }^{-3}\right)$	1.267	1.412	1.237	
$\mu\left(\right.$ mm $\left.{ }^{-1}\right)$	1.484	0.688	0.599	0.595
$F(000)$	0.924	1304	3352	3208
θ range for data collection	$2.20-25.19^{\circ}$	$2.35-25.01{ }^{\circ}$	$2.10-25.36^{\circ}$	$2.48-25.06^{\circ}$
R Reflections collected	50510	109214	135114	46462
Independent reflections $\left(R_{\text {int }}\right)$	$8462(0.0760)$	$11355(0.0589)$	$14033(0.0290)$	$7316(0.0391)$
Data / restraints / parameters	$8462 / 0 / 576$	$11355 / 2 / 644$	$14033 / 0 / 982$	$7316 / 0 / 492$
Goodness-of-fit on $F 2$	1.057	1.000	1.036	1.062
$R_{1}, w R_{2}$	$0.0398,0.0821$	$0.0421,0.1110$	$0.0261,0.0647$	$0.0359,0.1031$
$C C D C$ No.	1906953	1906960	1906964	1906972

2 Synthesis of complex $\left[\mathrm{Ag}_{2}\left(\mathrm{~L}^{1}\right)_{4}\left(\mathrm{SO}_{4}\right)\right]$ (1)

Method 1. $\mathrm{Ag}_{2} \mathrm{SO}_{4}(0.146 \mathrm{~g}, 0.468 \mathrm{mmol})$ was dissolved in R.O. water $(50 \mathrm{~mL})$. To this solution was added dropwisely a solution of $\mathrm{L}^{1}(0.355 \mathrm{~g}, 1.91 \mathrm{mmol})$ in acetone $(30 \mathrm{~mL})$. After stirring the reaction mixture for another 30 minutes, a white precipitate was formed. The solids filtered off and washed with R.O. water and ether to yield white powder product $0.435 \mathrm{~g}(88 \%)$. Method 2 . Changing the acetone solvent with dichloromethane (50 mL) to form a two-phase system. After vigorously stirring the reaction mixture for 1 hour, the organic layer was separated and concentrated under reduced pressure. Layerd with ether to give complex $1\left(90 \%\right.$ yield). ${ }^{1} \mathrm{H}$ NMR (600 $\left.\mathrm{MHz}, \mathrm{CD}_{2} \mathrm{C1}_{2}\right): \delta 13.57(\mathrm{~s}, 1 \mathrm{H}), 7.26-7.08(\mathrm{~m}, 5 \mathrm{H}), 3.71(\mathrm{~s}, 2 \mathrm{H}), 2.08(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm}$; ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{C1}_{2}$): 141.1, 128.9, 128.6, 126.5, 115.0, 29.5, 12.1 ppm ; IR (Nujol): $v_{\mathrm{N}-\mathrm{H}} 3191,3142,3083,3056 \mathrm{~cm}^{-1}, v_{\mathrm{C}=\mathrm{N}} 1587 \mathrm{~cm}^{-1}, v_{\mathrm{SO}^{-}} 1178,1123,1091$, $1045 \mathrm{~cm}^{-1}$; Positive ESI-MS: $[\mathrm{L}+\mathrm{H}]^{+} 187.65$ (11\%), $\left[\mathrm{AgL}_{2}\right]^{+} 481.88$ (100\%), $\left[\mathrm{Ag}_{2} \mathrm{~L}_{3}\right]^{+}$ 773.28 (10\%), $\left[\mathrm{Ag}_{3} \mathrm{~L}_{6}\left(\mathrm{SO}_{4}\right)\right]^{+} 1536.20(47 \%)$. Single crystals were grown from $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O}$. Anal. Calcd for $\mathrm{C}_{96} \mathrm{H}_{112} \mathrm{~N}_{16} \mathrm{Ag}_{4} \mathrm{~S}_{2} \mathrm{O}_{8}$: C, 54.55; H, 5.34; N, 10.60. Found: C, 54.88; H, 5.38; N, 10.79 \%.

3 Synthesis of complex [$\left.\mathrm{Ag}_{2}\left(\mathrm{~L}^{2}\right)_{5}\left(\mathrm{SO}_{4}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$ (2)

Method 1. $\mathrm{Ag}_{2} \mathrm{SO}_{4}(0.147 \mathrm{~g}, 0.471 \mathrm{mmol})$ was dissolved in R.O. water $(50 \mathrm{~mL})$. To this solution was added dropwisely a solution of $\mathrm{L}^{2}(0.432 \mathrm{~g}, 2.40 \mathrm{mmol})$ in acetone $(30 \mathrm{~mL})$. After stirring the reaction mixture for another 30 minutes, a white precipitate was formed. The obtained solid was washed by R.O. water and then ether to afford white solid product $0.541 \mathrm{~g}(93 \%)$, which is identified by elemental analysis as complex 2 . Single crystals were obtained by the slow evaporation of acetonitrile (95\%) solution of $\mathbf{2}$ to dryness in the air. Method 2. Changing the acetone solvent with dichloromethane (50 mL) to form a two-phase system. After vigorously stirring the reaction mixture for 1 hour, the organic layer was separated and concentrated under reduced pressure. Layerd with acetonitrile (95%) and evaporate slowly to dryness in the air to give crystals of 2 (91% yield). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{C1}_{2}$): $\delta 13.32$ (s, $1 \mathrm{H}), 5.96(\mathrm{~s}, 1 \mathrm{H}), 1.33(\mathrm{~s}, 18 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{C1}_{2}$): 125.5 , $98.6,31.9,30.9 \mathrm{ppm}$; IR (Nujol): $v_{\text {о-н }} 3445 \mathrm{~cm}^{-1}, v_{\text {N-H }} 3175,3138,3090,3038 \mathrm{~cm}^{-1}$, $v_{\mathrm{C}=\mathrm{N}} 1571 \mathrm{~cm}^{-1}, v_{\mathrm{SO}_{4}^{-}} 1141,1089 \mathrm{~cm}^{-1}$; Positive ESI-MS: $[\mathrm{L}+\mathrm{H}]^{+} 181.32$ (100\%), $\left[\mathrm{AgL}_{2}\right]^{+} 467.52(62 \%),\left[\mathrm{Ag}_{2} \mathrm{~L}_{4}\left(\mathrm{SO}_{4}\right)+\mathrm{H}\right]^{+} 1033.04(10 \%),\left[\mathrm{Ag}_{2} \mathrm{~L}_{5}\left(\mathrm{SO}_{4}\right)+\mathrm{H}\right]^{+} 1213.04$ (9\%), $\left[\mathrm{Ag}_{3} \mathrm{~L}_{6}\left(\mathrm{SO}_{4}\right)\right]^{+} 1500.92(69 \%)$. Anal. Calcd for $\mathrm{C}_{55} \mathrm{H}_{102} \mathrm{~N}_{10} \mathrm{Ag}_{2} \mathrm{O}_{5} \mathrm{~S}$: C $53.65, \mathrm{H}$ 8.35, N 11.38%. Found: C, 53.80; H, 8.34; N, 11.48%.

4 Synthesis of $\left[\mathrm{Ag}_{2}\left(\mathrm{~L}^{\mathbf{3}}\right)_{6}\left(\mathrm{SO}_{4}\right)\right]$ (3)

Method 1. $\mathrm{Ag}_{2} \mathrm{SO}_{4}(0.146 \mathrm{~g}, 0.468 \mathrm{mmol})$ was dissolved in R.O. water $(50 \mathrm{~mL})$. To this solution was added dropwisely a solution of $\mathrm{L}^{3}(0.627 \mathrm{~g}, 2.85 \mathrm{mmol})$ in acetone $(30 \mathrm{~mL})$. After stirring the reaction mixture for another 30 minutes, a white precipitate formed was filtered and washed by R.O. water and ether. Vacuum dry to afford 0.702 $\mathrm{g}(92 \%)$ of a white powder. Method 2. Changing the acetone solvent with dichloromethane to form a two-phase system. After vigorously stirring the reaction mixture for 1 hour, the organic layer was separated and concentrated under reduced pressure. Layerd with ether to give complex 3 (88% yield). ${ }^{1} \mathrm{H}$ NMR (600 MHz , $\left.\mathrm{CD}_{2} \mathrm{C1}_{2}\right): \delta 13.81(\mathrm{~s}, 1 \mathrm{H}), 7.71-7.02(\mathrm{~m}, 10 \mathrm{H}), 6.77(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (150 MHz , $\mathrm{CD}_{2} \mathrm{C1}_{2}$): 149.5, 131.2, 129.4, 128.8, 126.3, 100.9 ppm ; IR (Nujol): $v_{\mathrm{N}-\mathrm{H}} 3190,3138$, $3112,3097 \mathrm{~cm}^{-1}, v_{\mathrm{C}=\mathrm{N}} 1571 \mathrm{~cm}^{-1}, v_{\mathrm{SO}_{4}}{ }^{-1124,1110,1075,1052 \mathrm{~cm}^{-1} \text {; Positive ESI-MS: }}$ $[\mathrm{L}+\mathrm{H}]^{+} 221.70$ (72\%), $\left[\mathrm{AgL}_{2}\right]^{+} 549.86$ (100\%), $\left[\mathrm{Ag}_{3} \mathrm{~L}_{6}\left(\mathrm{SO}_{4}\right)\right]^{+} 1740.38$ (10\%). Single crystals suitable for X-ray structure determination are grown from $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O}$. Anal. Calcd for $\mathrm{C}_{90} \mathrm{H}_{72} \mathrm{~N}_{12} \mathrm{Ag}_{2} \mathrm{O}_{4} \mathrm{~S}$: C 66.18, H 4.44, N 10.29 \%. Found: C 66.57, H 4.51, N 10.23 \%.

5 Synthesis of $\left[\mathrm{Cu}_{2}\left(\mathrm{Hpz}^{\mathrm{Ph}, \mathrm{Ph}}\right)_{6}\left(\mathrm{SO}_{4}\right)\right]$ (4)

A mixture of complex $3(0.214 \mathrm{~g}, 0.131 \mathrm{mmol})$ and $\mathrm{CuBr}(0.0384 \mathrm{~g}, 0.268 \mathrm{mmol})$ was stirred in $5 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ for 30 min under N_{2} at room temperature. The reaction was filtered and the filtrate was evaporated under reduced pressure to afford white solid. The solid was washed by diethyl ether and dried in vacuo. Single crystals were grown by layering a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution with diethyl ether $(0.178 \mathrm{~g}, 86 \%$ yield $)$. The purity is confirmed by X-ray powder diffraction patterns as shown in S12. Anal. Calcd for $\left[\mathrm{Cu}_{2} \mathrm{C}_{90} \mathrm{H}_{72} \mathrm{~N}_{12} \mathrm{SO}_{4}\right] .\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)_{0.5}$: N, 10.59; C, 68.48; H, 4.64. Found: N, 10.64; C, 68.35 ; H, 4.32%. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 14.56$ (s, 1 H), 7.74 (d, $J=7.4 \mathrm{~Hz}$, 4 H), 7.13 (t, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}$), 7.00 (dd, $J=7.4,7.3 \mathrm{~Hz}, 4 \mathrm{H}$), 6.79 (s, 1 H$) \mathrm{ppm}$; ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{C1}_{2}$): 148.9, 130.9, 129.1, 128.7, 126.5, 101.0 ppm ; IR (Nujol): $v_{\mathrm{N}-\mathrm{H}} 3139,3090 \mathrm{~cm}^{-1}, v_{\mathrm{C}=\mathrm{N}} 1572 \mathrm{~cm}^{-1}, v_{\mathrm{SO}_{-}^{-}} 1125,1109,1074,1052 \mathrm{~cm}^{-1}$; Positive ESI-MS: $[\mathrm{L}+\mathrm{H}]^{+} 221.47$ (100\%), $\left[\mathrm{CuL}_{2}\right]^{+} 503.31$ (74\%).

6 Figure S2. The 1-D polymeric array of complex 1, which is mainly composed of alternative $\mathrm{Ag} . . \mathrm{Ag}$ and $\pi \ldots \pi$ interactions.

7. Figure S 3 . The hydrogen bonds and dative bonds around disordered sulfate for complex 2: $\mathrm{H}^{\prime} \cdots \mathrm{O} 2$ 2.04(1), $\mathrm{H}^{\prime} \cdots \mathrm{O}^{\prime}{ }^{\prime} 1.89(1), \mathrm{H}^{\prime} \cdots \mathrm{O}^{\prime}{ }^{\prime} 1.94(1), \mathrm{H} 4^{\prime} \cdots \mathrm{O} 31.99$ (1), H5E $\cdots \mathrm{O} 4$ 1.97(1), H5E $\cdots \mathrm{O} 4^{\prime} 2.24(1), \mathrm{H}^{\prime} \cdots{ }^{\prime} \cdots 3^{\prime} 2.03(1), \mathrm{H}^{\prime} \cdots \mathrm{O} 32.09(1)$, H10' $\cdots \mathrm{O} 11.92$ (1). $\mathrm{Ag} 1 \cdots \mathrm{O} 22.75(2), \mathrm{Ag} 1 \cdots \mathrm{O} 22.56$ (1).

8 Figure S4 IR spectrum of complex 1

9 Figure S5 IR spectrum of complex 2

10 Figure S6 IR spectrum of complex 3

11 Figure S7 IR spectrum of complex 4

12 Figure $\mathrm{S} 8{ }^{1} \mathrm{H} \&{ }^{13} \mathrm{C}$ NMR spectra of complex 1

14 Figure S10 ${ }^{1} \mathrm{H} \&{ }^{13} \mathrm{C}$ NMR spectra of complex 3

15 Figure S11 ${ }^{1} \mathrm{H} \&{ }^{13} \mathrm{C}$ NMR spectra of complex 4

16 Figure S12. ESI-MS of complex 1.

17 Figure S13. ESI-MS of complex 2.

18 Figure S14. ESI-MS of complex 3.

19 Figure S15. ESI-MS of complex 4.

20 Figure S16. PXRD of complex 2. Experimental (up) and simulated (down) results

21 Figure S17. PXRD of complex 3. Experimental (up) and simulated (down) results

22 Figure S18. PXRD of complex 4. Experimental (up) and simulated (down) results.

23 Figure S19. TGA of complex 1.

24 Figure S20. TGA of complex 2.

25 Figure S21. TGA of complex 3.

26 Figure S22. TGA of complex 4.

