Supporting Information

Hollow Sphere Formation by Self Aggregation of Nanocrystals Perovskite Fluoride NaNiF₃ and Ultrahigh Performance Asymmetric Supercapacitor

Nadeem Hussain,¹ Fangfang Wu,⁴Waqar Younas,³ and Liqiang Xu^{1,2,*}

^{*I*}Key Laboratory of Colloid & Interface Chemistry, Ministry of Education and School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China.

²Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage & Novel Cell Technology, Liaocheng University, Liaocheng City 252059, China

³Research Center of Materials Science, Beijing Key Laboratory of Construction Tailarable Advanced Functional Materials and Green Applications, Beijing Institute of Technology, Beijing, 100081, China

⁴College of Materials Science and Engineering, Zheiang University of Technology, 18 Chaowang Road, Hangzhou 310014, China

Corresponding Author

Email: <u>xulq@sdu.edu.cn</u>

Fig. S1 Adsorption-desorption isotherm and Pore size distribution of as prepared hollow spheres Perovskite fluoride NaNiF₃.

Fig. S2 TGA curve obtained from 10 to 700 °C in air of as prepared hollow spheres Perovskite fluoride $NaNiF_3$

Fig. S3 Ni 2p XPS spectra of NaNiF3 at charged state in three-electrode system.

Fig. S4 Nyquist plots of perovskite fluorides NaNiF₃ measured at open circuit potential.

Fig. S5 (a) CV curves of AC at different scan rates (10-100 mV s⁻¹) within the voltage window from -1 to 0 V. (b) Galvanostatic charging/discharging curves of activated carbon at different current densities within voltage window $-1\sim0$ V

Fig. S6 CV curves of AC and NaNiF₃ hollow spheres at scan rate of 20 mV s⁻¹ in a mixture of KOH and LiOH (3M+0.5M).

Figure S 7 Electrochemical performance of NaNiF₃**//AC ASC device using carbon paper as current collector.** (a) CV curves at different scan rates (5-80 mV s⁻¹) within the voltage window 0-1.7 V. (b) Galvanostatic charging/discharging curves at different current densities within voltage window 0-1.7 V.

Table S1. Three electrode performance Comparison of hollow sphere perovskite fluorides $NaNiF_3$ with reported perovskite fluorides, perovskite oxides and other state of art electrode materials.

Electrode material	Electrolyte	Specific Capacitance	Current density	Stability	Ref.					
NaNiF ₃	3 M KOH + 0.5 M LiOH	1342 F g ⁻¹	5 A g ⁻¹	90 % after 8,000 cycles	This work					
PerovskiteFluorieds										
KNi _{0.8} Co _{0.2} F ₃	3 M KOH + 0.5 M LiOH	1530 F g ⁻¹	1 A g ⁻¹	-	1					
K-Co-Mn-F	3 M KOH + 0.5 M LiOH	226 F g ⁻¹	1 A g ⁻¹	118 % after 5,000 cycles	2					
Perovskite Oxides										
SrC00.9Nb0.1O3-8	6 M KOH	786.1 F g ⁻¹	1 A g ⁻¹	95.7 % after 3000 cycles	3					
$SrRuO_{3};\\La_{0.2}Sr_{0.8}Mn_{0.2}Ru_{0.8}O$	6 М КОН	270 F g ⁻¹ ; 160 F g ⁻¹	20 mV s ⁻¹		4					
BiFeO ₃	1 M NaOH	81 F g ⁻¹	20 mV s ⁻¹		5					
TiO ₂ /BiFeO ₃	0.5 M Na ₂ SO ₄	440 F g ⁻¹	1.1 A g ⁻¹		6					
LaNiO ₃ ; MnO /LaNiO	1 M Na ₂ SO ₄	6.2; 160 F g ⁻¹	10; 0.01 V s ⁻¹		7					
LaNiO ₃ /NiO	7 M KOH	213.2 F g ⁻¹	1 A g ⁻¹		8					
La _{0.85} Sr _{0.15} MnO ₃ ;LaM	1 М КОН	198;187 F g ⁻¹	0.5 A g ⁻¹		9					
$(La_{0.75}Sr_{0.25})_{0.95}MnO$	1 M Na ₂ SO ₄	56 F g ⁻¹	2 mV s ⁻¹		10					
$La_{x}Sr_{1-x}NiO_{3-\delta}$	1 M Na ₂ SO ₄	719 F g ⁻¹	2 A g ⁻¹		11					
$\begin{array}{c} La_{x}Sr_{1-}\\ {}_{x}Co_{0.1}Mn_{0.9}O_{3-\delta}\end{array}$	1 М КОН	485 F g ⁻¹	1 A g ⁻¹		12					

LaMO ₃	106.58, 56.78,	1 A g ⁻¹	13
(M=Ni, Mn, Fe, Cr)	16.43, 24.40	-	
	F g ⁻¹		

Non perovskite materials								
Ni _{0.67} Co _{0.33} Se	6 M KOH	535 F g ⁻¹	1 A g ⁻¹	82 % after 2,000 cycles	14			
Ni-Co-P	3 M KOH + 0.5 M LiOH	1448 F g ⁻¹	1 A g ⁻¹		15			
Ni-Co-F	3 M KOH + 0.5 M LiOH	564 F g ⁻¹	1 A g ⁻¹		16			
NiCo ₂ O ₄	6 M KOH	351 F g ⁻¹	1 A g ⁻¹		17			
Ni-P@NiCo ₂ O ₄	3 M KOH + 0.5 M LiOH	1240 F g ⁻¹	1 A g ⁻¹		18			
NixCo _{2-x} P	6 M KOH	571 F g ⁻¹	1 A g ⁻¹		19			
CoMoO4- NiMoO4•xH2O	2 M KOH	1039 F g ⁻¹	1 A g ⁻¹		20			
$NiCo_2S_4@Ni_3V_2O_8$	6 M KOH	512 C g ⁻¹	1 A g ⁻¹		21			
NiCo ₂ S ₄ /Co ₉ S ₈	6 M KOH	749 F g ⁻¹	4 A g ⁻¹		22			
NiCo ₂ O ₄ @NiWO ₄	6 M KOH	1384 F g ⁻¹	1 A g ⁻¹		23			
Co-Ni-W-B- O/20rGO	6 M KOH	1189.1 F g ⁻¹	1 A g ⁻¹		24			
OMC/MoO ₂	$1 \text{ M H}_2\text{SO}_4$	37 mA h g ⁻¹	0.2 A cm ⁻²		25			

References

- 1. R. Ding, X. Li, W. Shi, Q. Xu, X. Han, Y. Zhou, W. Hong and E. Liu, *J. Mater. Chem. A*, 2017, **5**, 17822-17827.
- 2. W. Shi, R. Ding, X. Li, Q. Xu, D. Ying, Y. Huang and E. Liu, *Chem. Eur. J.*, 2017, **23**, 15305-15311.
- 3. L. Zhu, Y. Liu, C. Su, W. Zhou, M. Liu and Z. Shao, *Angew. Chem. Int. Ed.*, 2016, **128**, 9728-9731.
- 4. M. Wohlfahrt-Mehrens, J. Schenk, P. Wilde, E. Abdelmula, P. Axmann and J. Garche, *J. Power Sources*, 2002, **105**, 182-188.
- 5. C. Lokhande, T. Gujar, V. Shinde, R. S. Mane and S.-H. Han, *Electrochem. Commun.*, 2007, **9**, 1805-1809.
- 6. A. Sarkar, A. K. Singh, D. Sarkar, G. G. Khan and K. Mandal, ACS Sustainable Chem. Eng., 2015, **3**, 2254-2263.
- 7. D. K. Hwang, S. Kim, J.-H. Lee, I.-S. Hwang and I.-D. Kim, J. Mater. Chem., 2011, **21**, 1959-1965.
- 8. K. Liang, N. Wang, M. Zhou, Z. Cao, T. Gu, Q. Zhang, X. Tang, W. Hu and B. Wei, *J. Mater. Chem. A*, 2013, **1**, 9730-9736.
- 9. X. Wang, Q. Zhu, X. Wang, H. Zhang, J. Zhang and L. Wang, J. Alloys Compd., 2016, 675, 195-200.
- 10. J. Lü, Y. Zhang, Z. Lü, X. Huang, Z. Wang, X. Zhu and B. Wei, *RSC Adv.*, 2015, **5**, 5858-5862.
- 11. Y. Cao, B. Lin, Y. Sun, H. Yang and X. Zhang, *Electrochim. Acta*, 2015, **174**, 41-50.
- 12. Y. Cao, B. Lin, Y. Sun, H. Yang and X. Zhang, J. Alloys Compd., 2015, 624, 31-39.
- 13. N. Arjun, G.-T. Pan and T. C. Yang, *Results Phys.*, 2017, **7**, 920-926.
- 14. H. Chen, S. Chen, M. Fan, C. Li, D. Chen, G. Tian and K. Shu, *J. Mater. Chem. A*, 2015, **3**, 23653-23659.
- 15. R. Ding, X. Li, W. Shi, Q. Xu and E. Liu, *Chem. Eng. J.*, 2017, **320**, 376-388.
- 16. X. Li, R. Ding, W. Shi, Q. Xu and E. Liu, *Chem. Eur. J.*, 2017, **23**, 6896-6904.
- 17. R. Ding, L. Qi, M. Jia and H. Wang, *Electrochim. Acta*, 2013, **107**, 494-502.
- 18. X. Li, R. Ding, L. Yi, W. Shi, Q. Xu and E. Liu, *Electrochim. Acta*, 2016, **222**, 1169-1175.
- 19. Y.-M. Hu, M.-C. Liu, Y.-X. Hu, Q.-Q. Yang, L.-B. Kong and L. Kang, *Electrochim. Acta*, 2016, **215**, 114-125.
- 20. M.-C. Liu, L.-B. Kong, C. Lu, X.-J. Ma, X.-M. Li, Y.-C. Luo and L. Kang, *J. Mater. Chem. A*, 2013, **1**, 1380-1387.
- 21. L. Niu, Y. Wang, F. Ruan, C. Shen, S. Shan, M. Xu, Z. Sun, C. Li, X. Liu and Y. Gong, *J. Mater. Chem. A*, 2016, **4**, 5669-5677.
- 22. L. Hou, Y. Shi, S. Zhu, M. Rehan, G. Pang, X. Zhang and C. Yuan, *J. Mater. Chem. A*, 2017, **5**, 133-144.
- 23. S. Xu, Y. Chen, Y. Li, A. Lu, Y. Yao, J. Dai, Y. Wang, B. Liu, S. D. Lacey and G. R. Pastel, *Nano Lett.*, 2017, **17**, 5817-5822.
- 24. C. Xiang, Q. Wang, Y. Zou, P. Huang, H. Chu, S. Qiu, F. Xu and L. Sun, *J. Mater. Chem. A*, 2017, **5**, 9907-9916.
- 25. Y. Zhou, C. W. Lee and S. Yoon, *Electrochem. Solid-State Lett.*, 2011, 14, A157-A160.