Supporting information for

FRET-based colorimetric and ratiometric fluorescent probe for Cu²⁺ with a new trimethylindolin fluorophore

Jiao Zhang,^a Mei Zhu,^b Daoyong Jiang,^a Han Zhang,^a Luying Li,^a Guoning Zhang,^b

Yucheng Wang,^b Chao Feng,^c Hong Zhao*a

^a School of Chemistry and Chemical Engineering, Southeast University, Nanjing,

211189, China

^b Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and

Peking Union Medical College, Beijing, 100050, China

^c School of Materials and Chemical Engineering, Bengbu University, Bengbu 233030,

P. R. China

* Corresponding author E-mail address: <u>zhaohong@seu.edu.cn</u>

Contents

Fig. S1 The overlap (shown with oblique stripes) between emission of the donor and absorption spectra of the acceptor.

Fig. S2 A plot of absorbance of RhF against Cu^{2+} (0- 120 μ M).

Fig. S3 A plot of Bensei-Hildebrand obtained from the UV-Vis absorption.

Fig. S4 Changes of the fluorescence spectra of **RhF** (10 μ M) observed upon addition of various metal ions in a CH₃CN/aqueous HEPES buffer (10 mM, pH 7.3; 4:1, v/v).

Fig. S5 Calculations for FRET efficiency.

Fig. S6 Fluorescence titration spectra of RhF (10 μ M) in the presence of different concentrations of Cu²⁺ (0-50 μ M).

Fig. S7 The plot of the emission intensity ratios of RhF at I582/I503 against Cu^{2+} (88-140 μ M).

Fig. S8 Effect of pH on probe for the detection of Cu^{2+} .

Fig. S9 The changes of fluorescence intensity at 503 nm of probe **RhF** exposed to light for a long time.

Fig. S10 Job's plot of probe **RhF** with Cu²⁺ in a CH₃CN/aqueous HEPES buffer (10 mM, pH=7.3; 4:1 v/v).

Fig. S11 ESI-MS spectrum of probe RhF-Cu²⁺ complex.

Fig. S12 ¹H NMR spectra of RhF-Cu²⁺ (a) in DMSO-d₆ with D₂O and RhF (b) in DMSO-d₆.

Fig. S13. XPS of as prepared samples: (A) survey spectra of RhF-Cu²⁺ complex; (B) Cu2p of

RhF-Cu²⁺ complex.

Fig. S14 IR spectral data of RhF and RhF-Cu²⁺ complex.

Fig. S15 Effect of water content on probe for the detection of Cu^{2+} .

Fig. S16 ESI-MS spectrum of probe RhF.

Fig. S17 ¹H NMR Spectrum of probe RhF.

Fig. S18 ¹³C NMR Spectrum of probe RhF.

Table S1 Comparison of the recently reported probes for the detection of Cu²⁺.

Fig. S1 The overlap (shown with oblique stripes) between emission of the donor and absorption spectra of the acceptor, respectively.

Fig. S2 Absorbance plot of RhF against Cu^{2+} concentration from 0 to 120 μ M.

Fig. S3 Bensei-Hildebrand plot of $RhF-Cu^{2+}$ complex obtained from the UV-Vis absorption (absorbance calculated from 555 nm) studies.

Fig. S4 Changes of the fluorescence spectra of RhF (10 μ M) observed upon addition of various metal ions in a CH₃CN/aqueous HEPES buffer (10 mM, pH 7.3; 4:1, v/v).

Fig. S5 Calculations for FRET efficiency:

Energy transfer efficiency (Φ_{ET}) was evaluated through the following equation: ¹⁻⁴

$$\Phi_{\rm ET}=1-(F'_{\rm D}/F)$$

where F'_D and F_D denote the donor fluorescence intensity with and without an acceptor

respectively in the presence of Cu^{2+} ions.

Fig. S6 Fluorescence titration spectra of RhF (10 μ M) in the presence of different concentrations of Cu²⁺ (0-50 μ M). λ ex = 345 nm.

Fig. S7 The plot of the emission intensity ratios of RhF at I582/I503 against Cu^{2+} (88-140 μ M).

Fig. S8 Effect of pH on probe for the detection of Cu²⁺ (based on absorbance data).

Fig. S9 The changes of fluorescence intensity at 503 nm of probe RhF exposed to light for a long time.

Fig. S10 Job's plot of probe **RhF** with Cu^{2+} in a CH₃CN/aqueous HEPES buffer (10 mM, pH=7.3; 4:1 v/v). Where Xn is the mole fraction of **RhF** and ΔI is the change (I-I₀) in the absorbance in presence of Cu²⁺. The total concentration of RhF and Cu²⁺ was 20µM.

Fig. S11 ESI-MS spectrum of probe RhF-Cu²⁺ complex.

Fig.S12 ¹H NMR spectra of RhF-Cu²⁺ (a) in DMSO-d₆ with D₂O and RhF (b) in DMSO-d₆.

Fig. S13. XPS of as prepared samples: (A) survey spectra of RhF-Cu²⁺ complex; (B) Cu 2p of

RhF-Cu²⁺ complex.

Fig.S14 IR spectral data of RhF and RhF-Cu²⁺ complex.

Fig. S15 Effect of water content on probe for the detection of Cu²⁺.

Fig. S16 ESI-MS spectrum of probe RhF.

Fig. S17 ¹H NMR Spectrum of probe RhF.

Fig. S18 ¹³C NMR Spectrum of probe RhF.

Probes	λex/λem (nm)	Detection Limit	Working system	Operation mode	Analytical application:	Ref.
	455/519	(μM) 0.15	CH ₃ CN-H ₂ O (70:30, v/v, MOPS, 10 mM, pH = 7.0)	Turn-ON	NO	[5]
	290/ 355、 470	0.46	CH ₃ CN-H ₂ O(3:2, v/v,10 mM Tris- HCl)	Turn-OFF	NO	[6]
SH N SH	295/365	0.2	CH ₃ CN-H ₂ O (2:3,v/v)	Turn-ON	NO	[7]
S S S S S S S S S S S S S S S S S S S	376/439	14.5	CH ₃ CN	Turn-ON	NO	[8]
NC CN C	437/637	1.568	CH ₃ CN	Turn-ON	NO	[9]
	None	0.29	CH₃CN	Turn-ON	NO	[10]
	435/532	0.052	CH ₃ CN-H ₂ O (20:80, v/v, pH=7.4)	Turn-ON	NO	[11]
	419/524	13.05	CH ₃ CN-H ₂ O (99:1, v/v)	Turn-ON	NO	[12]
	420/ 540、 568	0.12	CH ₃ CN–HEPES (1 : 1, v/v, 20 mM, pH= 7.4)	Turn-ON	No	[13]
	345/ 503、 582	0.01168	CH ₃ CN-aqueous HEPES buffer (4:1, v/v, 10 mM, PH=7.3)	Turn-ON	YES	This work

Table S1 Comparison of the recently reported probes for the detection of $\mathrm{Cu}^{2+}.$

References

1 J. R. Lakowicz, *Topics in Fluorescence Spectroscopy Volume 2: Principles*, Kluwer Academic Publishers, New York, 2002.

2 D. Seth, A. Chakraborty, P. Setua, D. Chakrabarty, N. Sarkar, The Journal of Physical Chemistry B, 2005, 109, 12080-12085.

3 S. L. Gilat, A. Adronov, J. M. J. Fréchet, Int. Ed. Angew. Chem., Int. Ed. 1999, 38, 1422-1427.

4 M. H. Lee, D. T. Quang, H. S. Jung, J. Yoon, C.-H. Lee, J. S. Kim, *J. Org. Chem.* 2007, 72, 4242-4245.

5 Z. Chen, L. Wang, G. Zou, J. Tang, X. Cai, M. Teng and L. Chen, Spectrochim Acta A Mol Biomol Spectrosc, 2013, 105, 57-61.

6 Y. Zhang, X. Guo, X. Tian, A. Liu and L. Jia, Sensors and Actuators B: Chemical, 2015, 218, 37-41.

7 H. Diao, W. Niu, W. Liu, L. Feng and J. Xie, Spectrochim Acta A Mol Biomol Spectrosc, 2017, 170, 65-68.

8 S. Bayindir and M. Toprak, Spectrochim Acta A Mol Biomol Spectrosc, 2019, 213,6-11.

9 W. Li, Y. Zhang, X. Gan, M. Yang, B. Mie, M. Fang, Q. Zhang, J. Yu, J. Wu, Y. Tian and H. Zhou, Sensors and Actuators B: Chemical, 2015, 206, 640-646.

10 Q. Hu, Y. Liu, Z. Li, R. Wen, Y. Gao, Y. Bei and Q. Zhu, Tetrahedron Letters, 2014, 55, 4912-4916.

11 X.-X. Hu, X.-L. Zheng, X.-X. Fan, Y.-T. Su, X.-Q. Zhan and H. Zheng, Sensors and Actuators B: Chemical, 2016, 227, 191-197.

12 S. Thavornpradit, J. Sirirak and N. Wanichacheva, Journal of Photochemistry and Photobiology A: Chemistry, 2016, 330, 55-63.

13 Z. Hu, J. Hu, Y. Cui, G. Wang, X. Zhang, K. Uvdal and H.-W. Gao, Journal of Materials Chemistry B, 2014, 2.