Effect of linear side-chain length on the photovoltaic performance of benzodithiophene-*alt*-dicarboxylic ester terthiophene polymers

Kangqiao Ma,^{a,b} Tao Zhang,^b Pan Wan,^b Bowei Xu,^b Pengxin Zhou^a* and Cunbin An^b*

^aCollege of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China ^bBeijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China

Figure S1. GPC curves for P3TE-C8 and P3TE-C12 measured at 145 °C.

Figure S2. TGA curves for P3TE-C8 and P3TE-C12 measured under a nitrogen atmosphere at a heating rate of 10 °C/min.

Figure S3. The XRD profiles of P3TE-C8 and P3TE-C12.

Figure S4. (a) The EQE_{EL} of P3TE-C8:ITIC and P3TE-C12:ITIC The band gap of P3TE-C8:IITIC(b) and P3TE-C12:ITIC (c).

Figure S6. The ¹³C-NMR spectra of compound 2a in CDCl₃.

Figure S8. The ¹³C-NMR spectra of compound 2b in CDCl₃.

20 10 0

190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 fl (ppm)

Figure S9. The ¹H-NMR spectra of compound **3a** in CDCl₃.

Figure S10. The ¹³C-NMR spectra of compound **3a** in CDCl₃.

Figure S11. The ¹H-NMR spectra of compound **3b** in CDCl₃.

Figure S12. The ¹³C-NMR spectra of compound **3b** in CDCl₃.

Figure S13. The ¹H-NMR spectra of compound 4a in CDCl₃.

Figure S14. The ¹³C-NMR spectra of compound 4a in CDCl₃.

Figure S15. The ¹H-NMR spectra of compound 4b in CDCl₃.

Figure S16. The ¹³C-NMR spectra of compound 4b in CDCl₃.

D:A ratio	$V_{\rm OC}$ (V)	$J_{\rm SC}$ (mA cm ⁻²)	FF (%)	PCE (%)
1.5:1	0.797	12.70	45.29	4.58
1:1	0.777	13.52	42.38	4.45
1:1.5	0.769	13.52	40.66	4.23

Table S1. The best photovoltaic parameters of P3TE-C8:ITIC with different D:A weight ratios (w/w).

P3TE-C8:ITIC was dissolved in chlorobenzene solution with a concentration of 10 mg mL⁻¹. The solution was heated to 40 °C until total dissolution. The resulting solution was spin-coated onto PEDOT:PSS modified ITO in succession. The thickness (around 90 nm) of film was controlled the spin-coating speed at 1500-2000 r.m.p. Subsequently, the active layer was annealed at 100 °C for 10 min.

 Table S2. The best photovoltaic parameters of P3TE-C8:ITIC with different DIO ratios.

DIO ratio	$V_{\rm OC}$ (V)	$J_{\rm SC}$ (mA cm ⁻²)	FF (%)	PCE (%)
0	0.797	12.70	45.29	4.58
0.5%	0.814	12.80	52.48	5.47
1%	0.809	12.24	44.57	4.42
2%	0.815	9.96	39.44	3.20

P3TE-C8:ITIC (1.5:1 w/w) were dissolved in chlorobenzene solution with a concentration of 10 mg mL⁻¹. The solution was heated to 40 °C until total dissolution. The DIO was added into above solution. After 30 min, the resulting solution was spin-coated onto PEDOT:PSS modified ITO in succession. The thickness (around 90 nm) of film was controlled the spin-coating speed at 1500 r.m.p. Subsequently, the active layer was annealed at 100 °C for 10 min.

Annealing temperature (°C)	$V_{\rm OC}$ (V)	$J_{\rm SC}$ (mA cm ⁻²)	FF (%)	PCE (%)
80	0.827	12.13	49.25	4.94
100	0.814	12.86	52.48	5.47
120	0.825	12.71	50.61	5.31
140	0.828	11.59	52.21	5.30
160	0.829	11.40	51.78	4.89

Table S3. The best photovoltaic parameters of P3TE-C8:ITIC with different annealing temperatures.

P3TE-C8:ITIC (1.5:1 w/w)were dissolved in chlorobenzene solution with a concentration of 10 mg mL⁻¹. The solution was heated to 40 °C until total dissolution. The 0.5% DIO was added into above solution. After 30 min, the resulting solution was spin-coated onto PEDOT:PSS modified ITO in succession. The thickness (around 90 nm) of film was controlled the spin-coating speed at 1500 r.m.p. Subsequently, the active layer was annealed at 80-160 °C for 10 min.

D:A ratio	$V_{\rm OC}$ (V)	$J_{\rm SC}~({\rm mA~cm^{-2}})$	FF (%)	PCE (%)
1.5:1	0.917	10.15	57.54	5.36
1:1	0.916	12.83	52.06	6.12
1:1.5	0.907	12.46	49.48	5.59

Table S4. The best photovoltaic parameters of P3TE-C12:ITIC with different D:A weight ratios (w/w).

P3TE-C12:ITIC was dissolved in chlorobenzene solution with a concentration of 10 mg mL⁻¹. The solution was heated to 40 °C until total dissolution. The resulting solution was spin-coated onto PEDOT:PSS modified ITO in succession. The thickness (around 90 nm) of film was controlled the spin-coating speed at 1500-2000 r.m.p. Subsequently, the active layer was annealed at 100 °C for 10 min.

DIO ratio	$V_{\rm OC}$ (V)	$J_{\rm SC}~({ m mA~cm^{-2}})$	FF (%)	PCE (%)
0	0.916	12.83	52.06	6.12
0.5%	0.904	13.81	55.96	6.99
1%	0.885	11.56	42.86	4.39
2%	0.888	10.14	37.26	3.35

Table S5. The best photovoltaic parameters of P3TE-C12:ITIC with different DIO ratios.

P3TE-C12:ITIC (1:1 w/w) were dissolved in chlorobenzene solution with a concentration of 10 mg mL⁻¹. The solution was heated to 40 °C until total dissolution. The DIO was added into above solution. After 30 min, the resulting solution was spin-coated onto PEDOT:PSS modified ITO in succession. The thickness (around 90 nm) of film was controlled the spin-coating speed at 1700 r.m.p. Subsequently, the active layer was annealed at 100 °C for 10 min.

Annealing temperature (°C)	$V_{\rm OC}\left({ m V} ight)$	$J_{ m SC}$ (mA cm ⁻²)	FF (%)	PCE (%)
80	0.903	14.25	53.99	6.95
100	0.904	13.81	55.96	6.99
120	0.909	13.50	58.09	7.13
140	0.906	14.20	59.36	7.64
160	0.890	12.57	60.25	6.74

Table S6. The best photovoltaic parameters of P3TE-C12:ITIC with different annealing temperatures.

P3TE-C12:ITIC (1:1 w/w)were dissolved in chlorobenzene solution with a concentration of 10 mg mL⁻¹. The solution was heated to 40 °C until total dissolution. The 0.5% DIO was added into above solution. After 30 min, the resulting solution was spin-coated onto PEDOT:PSS modified ITO in succession. The thickness (around 90 nm) of film was controlled the spin-coating speed at 1700 r.m.p. Subsequently, the active layer was annealed at 80-160 °C for 10 min.

_	$E_{gap}(eV)$	$qV_{oc}(eV)$	$q\Delta V~(eV)$	$\Delta E_1(\mathrm{eV})$	$\Delta E_2(\mathrm{eV})$	EQE _{EL}	$\Delta E_3 (eV)$
P3TE-C8:ITIC	1.66	0.814	0.846	0.276	0.207	7.97E-7	0.363
P3TE-C12:ITIC	1.66	0.906	0.754	0.276	0.141	2.18E-6	0.337

Table S7. The detailed energy losses of P3TE-C8:ITIC and P3TE-C12:ITIC-based devices.