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Fig. S1 The EDS spectrum of the g-C3N4/AgI-30% composite and the corresponding EDS elemental 

mapping of C, N, Ag and I.
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Fig. S2 The survey XPS spectrum of the g-C3N4/AgI -30% composite sample.
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Fig. S3 The UV–visible diffuse reflectance spectra of g-C3N4, AgI and their composite samples. 
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Fig. S4 Linear kinetics simulation of the photocatalytic performance of g-C3N4/AgI composites for the 

calculation of pseudo-first-order rate constant
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Fig. S5 The UV-visible spectral changes of different concertration of 1,4-DHP. (A) 0.05 mM, (B) 0.15 

mM. (C) The absorbance (374 nm ) changes of 1,4-DHP with different initial concentrations (0.05, 0.1 

and 0.15 mM).
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Fig. S6 The XRD patterns (A) and Ag 3d XPS spectrum of g-C3N4/AgI-30% sample after repeated use 

under visible light irradiation.

The raw peak of Ag 3d5/2 can be further divided into two peaks at 367.5 and 368.2 eV, and the peak of 

Ag 3d3/2 can be further divided into 373.5 and 374.2 eV. The peaks appear at binding energy of 367.5 

and 373.5 eV belongs to the monovalent silver (Ag+) in AgI. While the peaks with a binding energy of 

368.2 and 374.2 eV were attributed to zero valent silver (Ag0) of metallic silver [1,2]
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Estimation of the VB and CB of AgI and g-C3N4

The valence band (VB) and conduction band (CB) potential of a semiconductor can be theoretically 

calculated using Mulliken electronegativity and the bandgap of a semicconductor by the the following 

formulas [3]:

EVB = X − Ee + 0.5Eg 

ECB = EVB − Eg 

where EVB and ECB are the top of the valence band and the bottom of the conduction band of the 

semiconductor, Eg is the band gap energy, Ee is the energy of free electrons on the hydrogen scale with 

a fixed value of 4.5 eV vs. NHE [3,4], and X is the geometric mean of the Mulliken electronegativity 

of the constituent atoms in the semiconductor. The Mulliken electronegativity of an atom is the 

arithmatic mean of the first ionization energy and the first electron affinity.

The detailed calculation steps for obtaining the Valence band and Conduction band of AgI was 

illustrated as follows:

The first ionization energy of silver element (Ag): I1 = 731.0 kJ·mol-1,

The first electron affinity of silver element (Ag): E1 = 125.62 kJ·mol-1,

The Mulliken electronegativity of silver element (Ag): 

χ = (I1 + E1) =  (731.0+125.62) = 428.31 kJ·mol-1.
1
2

1
2

Because: 1 eV = 1.6022×10-19 C × 1 V = 1.6022×10-19 J. 

And the Avogadro constant (NA) = 6.022× 1023 mol-1.

Thus, the Mulliken electronegativity of a silver atom (Ag) can be calculated as follows:

 χAg = 428.31×103 J·mol-1 ÷ (6.022× 1023 mol-1) ÷(1.6022×10-19 J)

= 4.439 eV.

 

For iodine (I):  I1 = 1008.4 kJ·mol-1, E1 = 295.15 kJ·mol-1,

 χ =  (I1 + E1) =  (1008.4+295.15) = 651.78 kJ·mol-1.
1
2

1
2

Thus, the Mulliken electronegativity of an iodine atom (I) is calculated as follows:

 χI = 651.78×103 J·mol-1 ÷ (6.022× 1023 mol-1) ÷(1.6022×10-19 J)
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= 6.755 eV

The geometric mean of the Mulliken electronegativity for AgI (X) is calculated as follows:

 X =  = 5.48 eV Ag I = 4.439 6.755  

The bandgap (Eg) of AgI was obtained by the UV-visible diffuse reflectance measurement, and was 

determined to be 2.73 eV (Fig. 4B ), i.e., Eg(AgI) = 2.73 eV.

Therefore, The Valence band of AgI is calculated as follows:

EVB = X − Ee + 0.5Eg 

= 5.48−4.5 +0.5×2.73

= 2.35 eV

The conduction band of AgI is calculated as follows:

ECB = EVB − Eg 

   = 2.35−2.73 

   = −0.38 eV

The Valence band and Conduction band of g-C3N4 can be obtained with the similar method as that of 

AgI. The EVB and ECB of g-C3N4 were determined to be 1.56 and −1.09 eV, respectively [4,5]. 
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