Supporting information

Meso-Macroporous Organic Polymer Supported Homogeneously Dispersed Small Pd Nanoparticles by a Simple Ion-Exchange Approach for Heck Reaction

Shunmin Ding,^{1*} Baihong Qu,¹ Yuan Li,¹ Ling Sun,¹ Shaohua Wu,¹ Rong Zeng,^{2*} Mengmeng Xu,¹ Chao Chen^{1*} and Ning Zhang¹

- Key Laboratory of Jiangxi Province For Environment and Energy Catalysis, College of Chemistry, Nanchang University, Nanchang, P.R. China. 330031. dingshunmin2007@163.com (S. Ding) and chaochen@ncu.edu.cn (C. Chen)
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, School of Chemistry, Biology and Materials Science, East China University of Technology, Nanchang, P.R. China. 330013. zengrongnc@163.com (R. Zeng)

Experimental Section

2.1 Chemicals

Triethylamine (\geq 99.0%, 500 mL), ethyl acetate (\geq 99.5%, AR, 500 mL), DMF (\geq 99.5%, AR, 500 mL), anhydrous ethanol (\geq 99.7%, AR, 500 mL), divinylbenzene(\geq 98%, 500 mL), 4-vinylpyridine (96%, 25 mL), iodobenzene (\geq 97.0%, 100 g), 4-iodonitrobenzene (98%, 25 g), 4-iodotoluene (99%, 25 g), 4iodoanisole (97%, 25 g), bromobenzene (\geq 99.5%, 500 mL), 4-bromonitrobenzene (97%, 5 g), 4-bromotoluene (98%, 25g), 4-bromoanisole (98%, 50 mL), chlorobenzene (\geq 99.5%, 500 mL), 4-chloronitrobenzene (99%, 100 g), 4chlorotoluene (98%, 25 g), 4-chloroanisole (98%, 25 g), styrene (\geq 99.0%, 500 mL) and ethyl acrylate (\geq 98.0%, 500 mL) were purchased from Sinopharm Chemical Reagent Co., Ltd and used without further purification. Ultrapure water (\geq 18.2 MΩ cm⁻¹) was used in all experiments.

2.2 Synthesis of MOP

The meso-macroporous organic polymer (MOP) was synthesized by a reported method [22, 26] and the detail procedure was as follows: divinylbenzene (2 mL) and 4-vinylpyridine (1 mL) were added into a solution containing 0.07 g of AIBN and 30 mL of ethyl acetate. After stirring at room temperature for 3 h, the mixture was hydrothermally treated at 100 °C for 24 h, followed by slow evaporation of the solvents. The obtained sample was designated as MOP.

2.3 Characterization

Fourier transform infrared (FT-IR) spectra were recorded between 4000-400 cm⁻¹ on a Nicolet 5700 instrument. The powder X-ray diffraction (XRD) data were

operated on a XD-3 diffractometer with Cu K α radiation ($\lambda = 0.15418$ nm, 40 kV/30 mA). The diffraction patterns were performed in the range of 10-80° with a step of 0.020 °/s. X-ray photoelectron spectroscopy (XPS) was performed on an ESCALAB250xi spectrometer (Thermon Scientific), all binding energies were calibrated by using the C1s peak at 284.8 eV as a reference. The nitrogen adsorption and desorption isotherms were measured at 77 K under a Micro ASAP 2020 instrument. Transmission electron microscopy (TEM) was taken on JEOL JEM-2100 at 300 kV. Palladium content of the catalyst was measured by inductively coupled plasma (ICP) on PE5300DV analyzer.

2.4. Typical procedure for Heck reaction

Iodobenzene (1.02 g, 5 mmol), styrene (0.78 g, 7.5 mmol), NEt₃ (15 mmol), DMF (10 mL), n-dodecane (0.5 mL, internal standard) and Pd-catalyst (0.0174 mol% Pd respect to iodobenzene) were added into a reaction tube equipped with a magnetic stir bar under atmospheric condition. The resulting mixture was then stirred at 90 °C for a specialized time. The yield of the products was determined by GC and GC-MS.

The catalyst leaching experiments was carried out by stirring the same mixture above at 90 °C. After 2 hour, Pd/MOP-I was filtered from the hot reaction mixture. Then the filtrate was continued for 5 hours at the same condition. The reaction cycles were performed using Pd/MOP-I catalyst (100 mg) in the Heck reaction of iodobenzene (50 mmol) and styrene (75 mmol) at 90 °C for 6 h. After each cycle the catalyst was separated, washed with DI-water and ethanol 3 times respectively, and dried at 60 °C under vacuum overnight. Fresh reactants and solvent were then charged to the glass-reactor together with the recovered catalyst to carry out the next run reaction.

The kinetic profiles of the consecutive runs were performed as follows: Iodobenzene (10.2 g, 50 mmol), styrene (7.8 g, 75 mmol), NEt₃ (150 mmol), DMF (100 mL), n-dodecane (5 mL, internal standard) and Pd-catalyst (0.0174 mol% Pd respect to iodobenzene, 100 mg) were added into a reaction tube equipped with a magnetic stir bar under atmospheric condition. An aliquot (50 uL) was removed every 2 hour and diluted with diethyl ether. GC analysis (1 uL autoinjection) indicated that the maximum yield of product was reached within 8 h. After each cycle the catalyst was separated, washed with DI-water and ethanol 3 times respectively, and dried at 60 °C under vacuum overnight. Fresh reactants and solvent were then charged to the glass-reactor together with the recovered catalyst to carry out the next run reaction.

Tables

Sample	S_{BET} (m ² g ⁻¹)	Pore volume (cm ³ g ⁻¹)	Pd loading (wt %) / ICP	
МОР	486	0.414	-	
MOP-I	132	0.300	-	
Pd/MOP-I	115	0.284	1.70	

Table S1. Textural properties of MOP, MOP-I and Pd/MOP-I

Sample	Particle	Pore size	BET	T (°C)	t(h)	Yield	TON ^a	TOF (h-	Ref.
	size of Pd	(nm)	(m^{2}/g)			(%)		1) b	
	NPs (nm)								
Pd/SiO ₂	7			135	4	88	629	157.25	7
Pd/CNCs	4.8	-	-	40	3	99	70	23.33	8
Pd/RGO-IL	7	2		130	6	92	244	40.67	9
Pd/MOF-3	2.8	-	-	80	24	98	163	6.8	10
Pd/ZIF-67-50	6	-	-	120	6	78	867	144.5	11
Pd/ZnFe ₂ O ₄	-	24.1	75	120	12	65	542	90.3	12
Pd/NHC-MOP	3-5	0.7-1.3	610	130	1	99	99	99	13
Pd/PS-IL(Cl)	4-6	-	-	100	6	42	210	35	14
PdNPs/ZIF-8	3-5		197	95	0.5	85	0.85	1.7	S1
Pd/ZPGly	10	-	-	120	3	82	860	286.67	S2
Pd/pAT	2-5	-	-	100	8	90	1200	150	S3
PdNPs@NHC@ZIF-8	Ultra small	2.1	758	110	0.75	94	1250	1666.67	S4
Pd/Nano-sized SiO ₂ -g-	-	-	-	85	30	100	10000	333.33	S5
PAAm									
Pd-imine@MNPs/Cs	20.5	-	-	-	-	75	-	$5.7 imes 10^4$	S6
Pd(0)/met/GO	14	-	-	110	1	96	960	960	S 7
PdcNPs/ C@Fe ₃ O ₄	10-15	-	-	100	12	99	135	11.25	S8
Pd@PANI	2	-	-	100	0.5	88	1466.67	2933.33	S9
Pd/CNCs	4.8	-	-	40	5	92.5	65.5	13.1	S10
Pd/MOP-I	2.4±0.2	30-90	115	90	6	97.3	5560	926.67	This work

Table S2. The summary of supported Pd nanoparticles catalysts for Heck Reaction for iodobenzene with styrene

^a TON = Molars of product / Molars of catalyst

^b TOF(h⁻¹) = TON/Reaction time (hours)

Sample	Pd loading of Pd/MOP-I (wt %)	Pd content of filtrate solution (ppm)
1st	1.70	<0.1
2nd	1.72	<0.1
3rd	1.69	<0.1
4th	1.69	<0.1

Table S3. ICP-OES results of all recycle runs for Pd/MOP-I and filtrate solution

Figures

Fig. S1. FT-IR spectra of MOP, MOP-I and Pd/MOP-I

Fig. S2. The survey XPS spectra of Pd/MOP-I

Fig. S3. The Heck reaction of iodobenzene with styrene catalyzed by Pd/MOP-I and control samples.

Fig. S4. TG analysis curves of MOP, MOP-I and Pd/MOP-I.

Fig. S5. The kinetic profiles of the consecutive runs of Pd/MOP-I.

Fig. S6. N₂ adsorption-desorption isotherms and pore size distributions of fresh Pd/MOP-I and after 4 recycles

Reference

- [S1] M. N. Shaikh, M. A. Aziz, A. Helal, A. N. Kalanthoden, Z. H. Yamani, *ChemistrySelect*, 2017, 2, 9052.
- [S2] V. Kozell, T. Giannoni, M. Nocchetti, R. Vivani, O. Piermatti, L. Vaccaro, *Catalysts*, 2017, 7, 186.
- [S3] A.Taher, M. Choudhary, D. Nandi, S. Siwal, K. Mallick, Appl. Organomet.Chem., 2018, 32, e3898.
- [S4] M. Azad, S. Rostamizadeh, H. Estiri, F. Nouri, Appl. Organomet.Chem., 2019, 33, e4952.
- [S5] S. Ghasemi, S. Karim, Colloid. Polym. Sci. 2018, 296, 1323.
- [S6] A. R. Hajipour, A. R. Sadeghi, Z. Khorsandi, Appl. Organomet.Chem., 2018, 32, e4112.
- [S7] H. Veisi, N. Mirzaee, Appl. Organomet. Chem., 2018, 32, e4067.
- [S8] B.S. Kumar, R. Anbarasan, A. J. Amali, K. Pitchumani, *Tetrahedron Lett.*, 2017, 58, 3276.
- [S9] L.Yu, Y. Huang, Z. Wei, Y. Ding, C. Su, Q. Xu, J. Org. Chem., 2015, 80, 8677.
- [S10] X. Guo, C. Hao, C. Wang, S. Sarina, X. Guo, X. Guo, Catal. Sci. Techn., 2016, 6, 7738.