Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

Dual-colored 4,4',4''-(cyclobutane-1,2,3,4-tetrayl)-

tetrabenzoate electrochromic materials with large optical contrast and coloration efficiency

Chun-rong Zhu, Jia-ping Xie, Hong-rong Mou, Zhen-jie Huang, Qian-Tang,* Cheng-Bin Gong,* Xiang-Kai Fu

The Key Laboratory of Applied Chemistry of Chongqing Municipality, Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China.

S1 Solubility behavior of CBTBAs	
S2 NMR and mass spectra	S2-S6
S3 ECD construction	S7
S4 Crystal data and structure refinement	S8
S5 Molecular orbital diagrams of CBTBAs	S9-S10
S6 Cyclic voltammogram	S11
S7 UV-Vis Spectroscopy	S12
S8 Transmittance change	S13
S9 Response time	S14
S10 Coloration efficiency	S15

S1 Solubility behavior of CBTBAs

Compound	Chloroform	CH ₂ Cl ₂	NMP	DMF	THF	Ethyl acetate	Butyl acetate	Toluene
а	++	++	++	++	++	++	++	_
b	++	++	++	++	++	++	++	—
c	++	++	++	++	++	++	++	—
d	++	++	++	++	++	++	++	—
e	++	++	++	++	++	_	—	—
f	++	++	++	++	++	_	—	—
g	++	++	++	++	++		—	—
h	++	++	++	++	++	+	+	—
i	+	+	++	++	++	—		—

Table S1 Solubility behavior of CBTBAs

The solubility was determined with a 50 mg sample in 1 mL solvent. ++ denotes soluble at room temperature; +- denotes partially soluble or swelling; - denotes insoluble even on heating.

S2 NMR and mass spectra

Fig. S1 ¹H NMR (top, left), ¹³C NMR (top, right), and mass spectra (bottom) of compound **a**.

Fig. S2 ¹H NMR (top, left), ¹³C NMR (top, right), and mass spectra (bottom) of compound b.

Fig. S3 ¹H NMR (top, left), ¹³C NMR (top, right), and mass spectra (bottom) of compound c.

Fig. S4 ¹H NMR (top, left), ¹³C NMR (top, right), and mass spectra (bottom) of compound **d**.

Fig. S5 ¹H NMR (top, left), ¹³C NMR (top, right), and mass spectra (bottom) of compound e.

Fig. S6 ¹H NMR (top, left), ¹³C NMR (top, right), and mass spectra (bottom) of compound f.

Fig. S7 ¹H NMR (top, left), ¹³C NMR (top, right), and mass spectra (bottom) of compound g.

Fig. S8 ¹H NMR (top, left), ¹³C NMR (top, right), and mass spectra (bottom) of compound h.

Fig. S9 ¹H NMR (top, left), ¹³C NMR (top, right), and mass spectra (bottom) of compound i.

S3 ECD construction

The schematic diagram of the ECD is shown in Scheme S1.Ferrocene (Fc) was used as a counter redox material to stabilize ECD. The reactions of color change in the device are mainly as follows:

Fc -
$$2e^{-} = Fc^{2+}$$
; (1)
CATBAs⁻ + $e^{-} = CATBAs^{2-}$; (2)
CATBAs²⁻ + $e^{-} = CATBAs^{3-}$; (3)

Fc loses electrons in the device to undergo an oxidation reaction, and the EC material undergoes an electron reduction reaction while also undergoing a color change. The role of Fc is to provide electrons for the reduction of EC materials to make the reaction faster, thereby accelerating the response time of the device and appropriately reducing the driving voltage.

Scheme S1 ECD structure diagram

S4 Crystal data and structure refinement

Compound	b
Formula	C ₄₀ H ₄₀ O ₈
Fw	648.27
Crystal system	triclinic
Space group	P-1
a/Å	7.7762(2)
b/Å	8.2847(4)
c/Å	13.7706(6)
α/°	99.715(4)
β/°	94.914(3)
γ/°	94.610(3)
Volume/Å ³	867.14(6)
Ζ	1
$\rho_{calc}/g/cm^3$	1.242
μ/mm ⁻¹	0.698
radiation	СиКа
size (mm)	0.20 imes 0.20 imes 0.20
F(000)	344.0
2θ range (deg)	10.886 to 146.06
reflns collected	9530
indep. reflns	$3389 (R_{int} = 0.0223)$
reflns obs. $[I > 2\sigma(I)]$	3008
data/restr/paras	3389/ 37/ 239
GOF	1.048
$R1/wR2 [I >= 2\sigma(I)]$	0.0580 / 0.1631
R1/wR2 (all data)	0.0621 / 0.1684
largest diff. peak/hole / e Å ⁻³	0.20 / -0.23
CCDC	1936928

Table S2 Crystal data and experimental parameters for compound b

S5 Molecular orbital diagrams of CBTBAs

HOMO-b

LUMO-a

LUMO-b

HOMO-d

LUMO-c

LUMO-d

S6 Cyclic voltammograms

Fig. S11 Cyclic voltammograms of 1 mmol L⁻¹compounds **a** (A), **c** (B), **d** (C), **e** (D), and **g** (E) cycled 100 times between -2.20 and 1.05 V vs. Ag/AgCl of in 50 mmol L⁻¹ TBAPF₆/DMF at 100 mV s⁻¹.

S7 UV-Vis Spectroscopy

Fig. S12 UV-vis absorption spectra for compound **a** (A), **c** (B), **d** (C), **e** (D), and **g** (E) with a concentration of 20 mmol L^{-1} on indium tin oxide-coated glass at different potentials. (F) Photograph of ECD based on compound **i** upon an applied potential of 0.0 and -2.6 V.

S8 Transmittance change

Fig. S13 Transmittance switching stability monitored at the maximum absorption wavelength under the applied potential of ± 2.3 V and ± 2.6 for compound **b** (A), **c** (B), **d** (C), and ± 2.1 V and ± 2.3 for compound **e** (D), g (E), and ± 2.6 V for compound **h** (F).

Fig. S14 Optical switching study of ECDs based on compounds **a** (A), **b** (B), **c** (C), **d** (D), **e** (E), **f** (F), and **g** (G) monitored at the maximum absorption wavelength under the applied potential of ± 2.3 V for compound **a**-**d** and ± 2.1 V for compound **e**-**g**.

Fig. S15 Optical switching study of ECDs based on compounds **a** (A), **b** (B), **c** (C), **d** (D), **e** (E), **f** (F), **g** (G), **h** (H), and **i** (I) monitored at the maximum absorption wavelength under the applied potential of ± 2.6 V for compound **a**-**d** and ± 2.3 V for compound **e**-**i**.

S10 Coloration efficiency

Fig. S16 Chronoamperometry curve and the corresponding in-situ transmittance curve of the ECD based on compounds **b** (A), **c** (B), **d** (C), **e** (D), **f** (E), **g** (F), and **h** (G).

Fig. S17 Optical density versus charge density of the ECD based on compounds b (A), c
(B), d (C), e (D), f (E), g (F), and h (G).