Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

Supporting Information

Cobalt/Titanium Nitride@N-doped Carbon Hybrid for Enhanced Electrocatalytic Hydrogen Evolution and Supercapacitance

Qing Zhu ^a, Lingmin Yao ^c, Rui Tong ^a, Dong Liu ^a, Kar Wei Ng ^{a*} and Hui Pan ^{*a,b}

^a Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Macao SAR

^b Department of Physics and Chemistry, Faculty of Science and Technology, University of Macau, Macao SAR

^c School of Physics and Electronic Engineering, Guangzhou University, Guangzhou, 510006,

China

*Corresponding author:

Hui Pan; Email addresses: huipan@um.edu.mo

Kar Wei Ng; Email addresses: billyng@um.edu.mo

n _{Ti} : n _{Co}	Co-TiN@NG-1/ CC	Co-TiN@NG-2 /CC	Co-TiN@NG-4 /CC	Co-TiN@NG- 8/CC
Theoretical	1:1	2:1	4:1	8:1
result				
ICP result	1.05:1	2.03:1	4.05:1	8.06:1

Table S1 the content molar ratio of Ti and Co in the Co-TiN@NG-x/CC from ICP results.

Fig. S1 XPS spectra of O 1s species on the surface of Co-TiN@NG-2/CC.

Fig. S2 High-resolution XPS spectra of C 1s of (a) Co-TiN@NG-1/CC, (b) Co-TiN@NG-2/CC, (c) Co-TiN@NG-4/CC and (d) Co-TiN@NG-8/CC

Fig. S3 FESEM images for (a) Co-TiN@NG-8/CC, (b) Co-TiN@NG-4/CC and (c) Co-TiN@NG-1/CC in low magnification, and (d) Co-TiN@NG-8/CC, (e) Co-TiN@NG-4/CC and (f) Co-TiN@NG-1/CC in high magnification.

Fig. S4 N_2 adsorption/desorption isotherms and (inset) corresponding pore size distributions of (a) TiN@NG/CC, (b) Co@NG-2/CC and (c) Co-TiN@NG-2/CC

Table	S2	Comparisons	of	HER	electrocatalytic	activity	of	Co-TiN	with
recentl	y rep	ported noble m	etal	-free c	atalysts under all	kaline con	nditi	ions.	

Catalyst	Substrate	Overpotential	Stability	Electrolyte	Reference
		at 10 mA/cm ⁻²	Time/CV		
		(mV)	cycles		
Co-TiN@NG-2/CC	CC	208	24 h/1000	1 M KOH	This work
			cycles		
$MoS_2/MoSe_2$	GCE	235	3 h	1 M KOH	4
Co-BDC/MoS ₂	GCE	248	15 h/2000	1 M KOH	5
			cycles		
Ni(OH) ₂ /MoS ₂	GCE	227	1000	1 M KOH	6
			cycles		
CoSe ₂ /MoSe ₂	GCE	218	1000	1 M KOH	7
			cycles		
MoSe ₂ @Ni _{0.85} Se	NF	117	20 h/1000	1 M KOH	8
			cycles		
Ni-Mo _x C	GCE	183	24 h/1000	1 M KOH	9

			cycles		
Fe-Ni ₃ C	GCE	292	10 h/1000	1 M KOH	10
			cycles		
Co ₂ P/WC@C	GCE	180	12 h/1000	1 M KOH	11
			cycles		
Fe ₃ C-Mo ₂ C/NC	GCE	180	-	1 M KOH	12
HNFs					
WC@CNS	NF	220	5 h	0.1 M KOH	13
TaC@CNS	NF	250	-	0.1 M KOH	13
NbC@CNS	NF	240	-	0.1 M KOH	13
$Co_{1.11}Te_2/C$	GCE	178	20 h/1000	1 M KOH	14
			cycles		

Table S3 Mass activity (MA) and turnover frequency (TOF) of HERelectrocatalysts in 1 M KOH.

Catalysts	Mass activity (mA·mg ⁻¹)	TOF (s ⁻¹)
TiN@NG/CC	1.64	0.00049
Co@NG/CC	1.48	0.00044
Co-TiN@NG-8/CC	4.06	0.0012
Co-TiN@NG-4/CC	5.12	0.0015
Co-TiN@NG-2/CC	5.95	0.0018
Co-TiN@NG-1/CC	3.78	0.0011

 Table S4 Fitting results of Nyquist plots for all the samples.

Sample	$R_{\rm s}(\Omega)$	$R_{ m ct}(\Omega)$
TiN@NG/CC	2.568	139.3
Co@NG/CC	2.664	20.07
Co-TiN@NG-8/CC	2.377	4.999
Co-TiN@NG-4/CC	2.474	4.837
Co-TiN@NG-2/CC	2.289	3.4
Co-TiN@NG-8/CC	3.736	5.583

Fig. S5 CV curves at various scan rates for the determination of C_{dl} for sample (a) TiN@NG/CC, (b) Co-TiN@NG-8/CC, (c) Co-TiN@NG-4/CC (d) Co-TiN@NG-2/CC and (e) Co-TiN@NG-1/CC.

Fig. S6 (a) Raman spectra, (b) TEM image and (c) HRTEM image of Co-TiN@NG-2/CC catalyst after the continuous scanning test.

Fig. S7 CV curves of (a) TiN@NG/CC and (b) Co-TiN@NG-2/CC at different scanning rates from 5 to 100 mV/s.

Fig. S8 GCD curves of (a) TiN@NG/CC and (b) Co-TiN@NG-2/CC at different current densities from 0.5 to 5 mA/cm^2 in 1 M KOH.

Fig. S9 EIS test of TiN@NG/CC and Co-TiN@NG-2/CC at an opencircuit potential in 1 M KOH.

Table S5 Comparison the capacitance performance of Co-TiN with other metalnitrides that have been reported recently.

Electrodes	Potential	Electrolyte	Capacitance	Reference
	Range			
Co-TiN@NG-2/CC	-1.0 to -0.2 V	1.0 M KOH	88.5 F/g (148.6	This work
	(Vs. SCE)		mF/cm^2) at 2	
			mA/cm ²	
Si@Ti@TiN thin	0 to 0.8 V (Vs.	0.5 M	43.8 mF/cm ²	6
film array	Ag/AgCl)	H_2SO_4	at 1.0 mA/cm ²	
TiN	-0.8 to 0.2 V	2.0 M KOH	38.5 F/g at 40 mV/s	7

	(Vs. SCE)			
TiN/CNT	-0.6 to 0.25 V	7.5 M KOH	89.96 F/g at 10 mV/s	8
	(Vs. SCE)			
MoN _x /TiN NTA	-1.2 to -0.6 V	1.0 M LiOH	121.50 mF/cm ² at 0.3	9
	(Vs. SCE)		mA/cm ²	
TiN@C	-1 to 0 V (Vs.	1.0 M KOH	11.15 mF/cm ² at 10	10
	SCE)		mV/s	
TiN/C	-1.2 to 0.4 V	1.0 M KOH	102.6 F/g at 1 A/g	11
	(Vs. SCE)			
TiN/C	-1.0 to 0 V (Vs.	1.0 M KOH	159.0 F/g at 0.5 A/g	12
	SCE)			
Nb ₄ N ₅ @NC	0 to 0.6 V	1.0 M KOH	243.6 mF/cm ² at 0.5	13
	(Vs. Ag/AgCl)		mA/cm ²	
GaN	-0.5 to 0.4 V	1.0 M	24 F/g at 0.5 mA/cm ²	14
	(Vs.	H_2SO_4		
	$Hg/Hg_2SO_4)$			
CrN	0 to 0.8 V	0.5 M	12.8 mF/cm ² at 1	15
	(Vs. Ag/AgCl)	H_2SO_4	mA/cm ²	