Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

Electronic Supplementary Information for:

Superhydrophobic poly(lactic acid) electrospun nanofibrous membrane surface-

functionalized with TiO₂ nanoparticles and methyltrichlorosilane for oil/water

separation and dye adsorption

Zixuan Zhou, Lejing Liu, Weizhong Yuan*

Shanghai Tenth People's Hospital, School of Medicine, School of Materials Science and Engineering, Tongji University, Shanghai 201804, People's Republic of China. E-mail: yuanwz@tongji.edu.cn (W. Yuan). Tel: +86 21 69580234, Fax: +86 21 69584723

Fig. S1 (a) FT-IR spectra of PLA, PLA@TiO₂, PLA@TiO₂@MTS, and (b) X-ray photoelectron spectroscopy (XPS) of titanium.

Type of oil	The thickness of the membrane (nm)	The permeate flux (Lm ² h ⁻¹)
soybean oil	150	406.9±68.7
	180	517.1±93.2
	200	608.3±57.7
<i>n</i> -hexane	150	1837.8±35.9
	180	2297.6±51.6
	200	2499.8±47.6

Table S1 The relationship between the permeate flux and the thickness of the

membrane.

The relationship between film thickness and flux is:

$J = (\varepsilon \pi r_{\rm p}^2 \Delta p)/8\mu L$

where *J* is the permeation flux, ε is the porosity of the medium, r_p is the effective pore radius, Δp is the pressure, μ is the viscosity of the liquid, and *L* is the thickness of the membrane.

	Table S2	Comparison	of oil-water	separation	efficiency	of different	materials.
--	----------	------------	--------------	------------	------------	--------------	------------

Oil-water separation material	Oil-water separation efficiency (%)	Reference	
PLA@TiO2@MTS			
electrospun nanofiber	98.4		
membrane (this work)			
LDH/cellulose membrane	95	Ref. 1	
Filter paper coated with			
polystyrene grain,	>06	Dof 2	
polyethylene terephthalate,	~90	Kel. 2	
silica			
Melamine sponge coated with	06	Dof 2	
chitosan-sodium	20	Kei. J	

Fe₃PO₄

MB adsorption Material	The adsorption capacity of MB (mg/g)	Reference
PLA@TiO2@MTS electrospun	226.25	
nanofiber membrane (this work)	230.23	
Crosslinked sericin/β-		
cyclodextrin/poly(vinyl alcohol)	187.97	Ref. 4
composite nanofibers		
MOF/graphite oxide hybrid	102.40	Ref. 5
material	183.49	
PU/10GO electrospun	100.8	Ref. 6
membrane	109.8	

 Table S3 Comparison of adsorption of methylene blue by different materials.

We used the formula (1) to conduct a comparison test of methylene blue adsorption capacity:

$$q_t = \frac{C_0 - C_e}{m} V \tag{1}$$

where C_0 is the initial and C_e is the equilibrium concentration of MB in mg/L, m is the adsorbent mass in g and V is the volume of MB solution in L.

References

 X. Yue, J. Li, T. Zhang, F. Qiu, D. Yang and M. Xue, In situ one-step fabrication of durable superhydrophobic-superoleophilic cellulose/LDH membrane with hierarchical structure for efficiency oil/water separation, *Chem. Eng. J.* 2017, 328, 117-123.

- S. Wang, M. Li and Q. Lu, Filter Paper with Selective Absorption and Separation of Liquids that Differ in Surface Tension, *ACS Appl. Mater. Interfaces* 2010, 2, 677-683.
- 3 C. Su, H. Yang, S. Song, B. Lu and R. Chen, A magnetic superhydrophilic/oleophobic sponge for continuous oil-water separation, *Chem. Eng. J.* 2017, 309, 366-373.
- 4 R. Zhao, Y. Wang, X. Li, B. Sun and C. Wang, Synthesis of beta-Cyclodextrin-Based Electrospun Nanofiber Membranes for Highly Efficient Adsorption and Separation of Methylene Blue, ACS Appl. Mater. Interfaces 2015, 7, 26649-26657.
- 5 L. Li, X.L. Liu, H.Y. Geng, B. Hu, G.W. Song and Z.S. Xu, A MOF/graphite oxide hybrid (MOF: HKUST-1) material for the adsorption of methylene blue from aqueous solution, *J. Mater. Chem. A* 2013, 1, 10292-10299.
- 6 S.P. Sundaran, C.R. Reshmi, P. Sagitha, O. Manaf and A. Sujith, Multifunctional graphene oxide loaded nanofibrous membrane for removal of dyes and coliform from water, *J. Environ. Manage.* 2019, 240, 494-503.