Supporting information for

HKUST-1 Water-Resistant Functionalized with

Polydimethylsiloxane for Rubidium Ion Efficient Capture

Ning Tian,^a Yuan Gao,^a Jiafei Wu,^a Suqing Luo,^b and Wei Dai*^a

^aKey Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, People's Republic of China

^bCollege of Economics and Management, Zhejiang Normal University, Jinhua 321004, People's

Republic of China

Table S captions:

Table S1. The structural information of MOFs prepared in this work.

 Table S2.
 Element composition of SEM-EDS analysis for HKUST-1 and

 PDMS(2.0)@HKUST-1.

Table S3. Comparison of adsorption capability and reusability of Rb⁺ on some MOFs materials.

Table S4. Adsorption isotherm models used in this study and their linear forms.

Table S5. Constants and correlation coefficients of different adsorption models for

HKUST-1 before and after coated with PDMS.

Table S6. Kinetic calculation equations

 Table S7. Kinetic parameters for Rb(I) adsorption on HKUST-1 before and after

 coated with PDMS.

Samples	\mathbf{S}_{BET}	V _{total}	V _{meso}	V_{mic}	Average pore
F	(m^2/g)	(mL/g)	(mL/g)	(mL/g)	diameter (nm)
HKUST-1	1242.76	0.58	0.10	0.48	2.15
HKUST-1(R1)	448.17	0.22	0.05	0.17	0.95
HKUST-1(R2)	291.20	0.29	0.09	0.20	0.35
PDMS(0.5)@ HKUST-1	1156.70	0.51	0.07	0.44	1.82
PDMS(1.0)@ HKUST-1	1103.70	0.54	0.15	0.39	1.96
PDMS(2.0)@ HKUST-1	1102.64	0.46	0.05	0.41	1.74
PDMS(2.0)@ HKUST-1(R1)	1093.58	0.42	0.04	0.38	1.69
PDMS(2.0)@ HKUST-1(R5)	1082.42	0.41	0.04	0.37	1.65
PDMS(3.0)@ HKUST-1	1100.90	0.46	0.04	0.42	1.72

Table S1. The structural information of MOFs prepared in this work.

	Element content, %								
Sample -	Si	Cu	С	0	Total				
HKUST-1	0	13.49	55.28	31.23	100				
PDMS(2.0)@HKUST-1	1.71	7.42	57.39	33.48	100				

PDMS(2.0)@HKUST-1.

Adsorbent	Adsorption capacities (mg/g)	Reusability (mg/g)	Reference
PMA@ HKUST-1	93	45 (twice)	(14)
PH@MIL-101(Cr)	89	80 (5 times)	(13)
MIL-101(Cr)	73	66 (5 times)	(13)
MIL-53(Al)	51	25 (twice)	(14)
HS-Fe ₃ O ₄ @MIL-53(Al)	86	65 (twice)	(9)
HKUST-1	82	8 (3 times)	This work
PDMS@HKUST-1	82	82 (5 times)	This work

Table S3 Comparison of adsorption capability and reusability of Rb⁺ on some MOFs materials.

Isotherm	Nonlinear form	Nonlinear form Linear form					
Langmuir-I	$q_e = \frac{K_L C_e}{1 + K_L C_e}$	$\frac{C_e}{q_e} = \frac{1}{q_L \cdot K_L} + (\frac{1}{q_L}) \cdot C_e$	$\frac{C_e}{q_e}$ versus C_e				
Freundlich	$q_e = K_f C_e^{\frac{1}{n}}$	$\ln q_e = \ln K_f + (\frac{1}{n}) \cdot \ln C_e$	$\ln q_e$ versus $\ln C_e$				
Temkin	$e^{qe} = \left(K_T C_e\right)^{\frac{RT}{b_T}}$	$q_e = \frac{RT}{b_T} \ln K_T + \frac{RT}{b_T} \ln C_e$	q_e versus $\ln C_e$				
D–R	$q_e = q_s e^{(-K_D \varepsilon^2)}$	$\ln q_e = \ln q_s - K_D \varepsilon^2$	$\ln q_e$ versus ε^2				

Table S4. Adsorption isotherm models used in this study and their linear forms.

Where q_e is the maximum capacity of adsorption in mg/g; K_L is a constant related to the affinity of the binding sites in L/mg; K_f and n are the measures of adsorption capacity and intensity of adsorption; R is the universal gas constant; b_T is related to the heat of adsorption in kJ/mol. T is the absolute temperature in K; R is the universal gas constant; K_T is the Temkin constant about the capacity of adsorption in L/g; q_s is the D-R isotherm constant in mg/g; K_D stands for the constant that is relevant with the adsorption energy in mol²/kJ²; ε represents the Polanyi potential constant in kJ/mol;

		Langmuir]	Freundlich			Temkin			D-R		
Samples	q_m	K_L	R^2	K_{f}	п	R^2	b_T	K_T	<i>R</i> ²	$q_{ m s}$	K_D	R^2	
	(mg/g)	(<i>L</i> /mg)		(<i>L</i> /g)			(kJ/mol)	(L/g)		(mg/g)	(mol²/k		
											J ²)		
HKUST-1	83.76	0.0052	0.2529	1.3843	1.0305	0.9942	78.39	0.1372	0.8631	1.46E-05	51.05	0.6560	
HKUST-1R1	42.24	0.0029	0.2067	0.2896	0.8799	0.9844	146.44	0.0986	0.9051	3.35E-05	27.12	0.8017	
HKUST-1R2	7.74	0.0204	0.4997	0.2041	1.1654	0.7047	1271.16	0.2501	0.5468	4.29E-05	6.03	0.8892	
PDMS(0.5)@HKUST-1	83.45	0.0045	0.2107	1.3233	1.0063	0.9931	76.38	0.1406	0.8804	1.46E-05	52.68	0.6686	
PDMS(1.0)@HKUST-1	83.18	0.0017	0.2042	1.3085	1.0021	0.9924	76.51	0.1401	0.8759	1.47E-05	52.67	0.6687	
PDMS(2.0)@HKUST-1	82.18	0.0054	0.35	2.3858	1.1880	0.9901	84.67	0.1718	0.8451	1.01E-05	52.45	0.6221	
PDMS(3.0)@HKUST-1	82.76	0.0066	0.2522	0.8939	0.9415	0.9909	80.43	0.1252	0.8873	2.16E-05	50.85	0.7864	
PDMS(2.0)@HKUST-1R1	82.11	0.0026	0.2561	1.6525	1.0659	0.9887	78.89	0.1491	0.8978	1.55E-05	54.79	0.7476	
PDMS(2.0)@HKUST-1R5	51.90	0.0021	0.2020	0.6179	0.9562	0.9867	113.16	0.1157	0.9374	2.55E-05	36.76	0.7713	

Table S5. Constants and correlation coefficients of different adsorption models for HKUST-1 before and after coated with PDMS.

Table S6. Kinetic calculation equations.											
Name	equations										
Pseudo-first order model	$\ln(q_e - q_t) = \ln(q_e) - K_1 t$										
Pseudo-second order model	$\frac{t}{q_t} = \frac{1}{K_2 q_e} + \frac{t}{q_e}$										
Intra-particle diffusion model	$q_t = K_3 t^{1/2}$										
Normalized standard deviation	$\Delta q(\%) = \frac{(q_{e,\exp} - q_{e,cal})}{q_{e,\exp}} \times 100\%$										

Where q_e and q_t (mg/g) are the uptakes of thiophene at equilibrium and at time t (min), respectively, K_1 (1/min) is the adsorption rate constant, K_2 (g/mg.min) is the rate constant for the second-order equation, and K_3 (mg/g.min^{1/2}) is the intra-particle diffusion rate constant.

Where $q_{e,exp}$ and $q_{e,cal}$ are the experimental and calculation uptakes of CR, respectively.

		Pseud	o-first-orde	er rate eq	uation		Pseudo-second-order rate equation					Intra-particle diffusion model		
Sample	<i>q_{e,exp}</i> (mg/ g)	q _{e,cal} (mg/g)	<i>K</i> ₁ (1/min)	R ²	Δq (mg/g)	∆q (%)	q _{e,cal} (mg/ g)	K₂ (g/mg ∙min)	R ²	∆q (mg/g)	∆q (%)	C (mg/g)	<i>K</i> ₃ (mg/g· min ^{1/2})	<i>R</i> ²
HKUST-1	83	14.401	-0.09	0.664	68.59	82.65	84.10	0.01	0.999	-1.10	-1.33	64.85	2.49	0.632
HKUST-1R1	41	6.615	-0.086	0.529	34.38	83.87	41.78	0.01	0.998	-0.789	-1.92	27.38	1.87	0.627
HKUST-1R2	5	4.499	-0.053	0.909	0.500	10.01	6.37	0.008	0.966	-1.37	-27.4	0.36	0.59	0.868
PDMS(2.0)@HKUST-1	83	18.445	-0.12	0.677	64.55	77.78	84.32	0.01	0.999	-1.32	-1.59	64.03	0.63	0.616
PDMS(2.0)@HKUST- 1R1	83	16.414	-0.115	0.608	66.59	80.22	84.25	0.01	0.999	-1.246	-1.50	64.73	2.53	0.602
PDMS(2.0)@HKUST- 1R5	46	8.485	-0.06	0.928	37.52	81.55	46.38	0.015	0.999	-0.38	-0.83	35.50	1.41	0.599

Table S7. Kinetic parameters for Rb(I) adsorption on HKUST-1 before and after coated with PDMS.

Figure S captions:

Fig. S1 Weber–Morris intra-particle diffusion plots for the adsorption of Rb(I) on HKUST-1 and PDMS(2.0)@HKUST-1 before and after recycle use.

Fig. S2 Effect of pH on the zeta potential of HKUST-1.

Fig. S3 Effect of pH on the Rb(I) uptake capacity of HKUST-1.

Fig. S1. Weber–Morris intra-particle diffusion plots for the adsorption of Rb(I) on HKUST-1 and PDMS(2.0)@HKUST-1 before and after recycle use.

Fig. S2. Effect of pH on the zeta potential of HKUST-1.

Fig. S3. Effect of pH on the Rb(I) uptake capacity of HKUST-1.