Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

Medium sized cyclic bis(anisylphosphonothioyl) disulfanes and the

corresponding related cyclic sulfanes - structure and the most characteristic

reactions

Witold Przychodzeń*, Jarosław Chojnacki, Łukasz Nierzwicki

Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11, 80233 Gdansk (Poland) E-mail: witold.przychodzen@pg.edu.pl

Electronic Supplementary Information

CONTENT	Page
Materials	S4
Instrumentation	S4
Characterization data for compounds 2b, 2b', 2d, 3a-3c and 4a	S5
NMR Spectra and NMR spectral parameters of compounds 2 - 4	S8-S24
Figure S1. ¹ H NMR spectrum of 2b' in CDCl ₃ Figure S2. ¹³ C NMR spectrum of 2b' in CDCl ₃ Figure S3. ³¹ P { ¹ H} NMR spectrum of 2b' in CDCl ₃ Figure S4. ¹ H NMR spectrum of 2d in CDCl ₃ Figure S5. ¹³ C NMR spectrum of 2d in CDCl ₃ Figure S6. ³¹ P NMR spectrum of 2d in CDCl ₃ Figure S7. ¹ H NMR spectrum of <i>cis</i> - 3a in CDCl ₃ Figure S8. ¹³ C NMR spectrum of <i>cis</i> - 3a in CDCl ₃ Figure S9. ¹ H NMR spectrum of <i>trans</i> - 3a in CDCl ₃ Figure S10. ¹³ C NMR spectrum of <i>trans</i> - 3a in CDCl ₃ Figure S10. ¹³ C NMR spectrum of <i>cis</i> - 3b in CDCl ₃ Figure S11. ¹ H NMR spectrum of <i>cis</i> - 3b in CDCl ₃ Figure S12. ¹³ C NMR spectrum of <i>cis</i> - 3b in CDCl ₃ Figure S13. ¹ H NMR spectrum of <i>trans</i> - 3b in CDCl ₃ Figure S13. ¹ H NMR spectrum of <i>trans</i> - 3b in CDCl ₃ Figure S15. ¹ H NMR spectrum of <i>a</i> crude mixture of <i>cis</i> - 3b and <i>trans</i> - 3b (4:1) in C ₆ D ₆ Figure S16. ³¹ P NMR spectrum of <i>cis</i> - 3c in CDCl ₃	S8 S8 S9 S9 S10 S10 S11 S11 S12 S12 S13 S13 S14 S14 S14 S15 S15 S16
Figure S18. ¹³ C NMR spectrum of <i>cis</i> -3c in CDCl ₃ Figure S19. ¹ H NMR spectrum of <i>trans</i> -3c in CDCl ₃ Figure S20. ¹³ C NMR spectrum of <i>trans</i> -3c in CDCl ₃ Figure S21. ¹ H NMR spectrum of 4a in CDCl ₃	S16 S17 S17 S18

Figure S22 . ¹³ C NMR spectrum of 4a in CDCl ₃ Figure S23 . ¹ H and ³¹ P NMR spectra of 2b in CDCl ₃ recorded at room and low temperatures								
Figure S24 . ¹ H NMR spectra of 2b in C_2Cl_4 recorded at a) 50°C and b) 100°C Figure S25 . ¹ H NMR spectra of 2b in $C_5D_6NO_2$ recorded at a) 70°C, b) 110°C, c) 150°C, d)185°C and e)185°C for 15 min								
Figure S26 . ³¹ P NMR spectra of 2a +Ph ₃ P (a) and 2a +Ph ₃ P plus 2,4- (NO ₂) ₂ C ₆ H ₂ COOH (b) in MeCN ₂ CH ₂ Cl ₂ (1:1) plus 10% C ₂ D ₂								
Figure S27 . ³¹ P NMR spectra of reaction products obtained using the general procedure (see experimental section), which was intended to give rise to 14- and 20-membered disulfanes	S21							
Figure S28 . 202 MHz ³¹ P NMR spectra of the solution of disulfane 2b in DMSO- d ₆ showing the presence of 2b S-oxides as its initial oxidation products. Figure S29 . Correlations of cyclic disulfanes 2 (except for 2b') ring size and the difference in chemical shifts for geminal protons $\Delta \delta_{\text{Hax-Heq}}$ (blue line) and for	S22							
aromatic $\Delta \delta_{\text{Hortho-Hmeta}}$ protons (red line) taken from NMR spectra recorded in CDCl ₃ at room temperature.	S22							
satellites showing a difference in P-P couplings: a) <i>cis</i> - 3c (dd, ${}^{1}J_{PC} = 135$ Hz, ${}^{2}J_{PP} = -19.3$ Hz) and b) <i>trans</i> - 3c (dd, ${}^{1}J_{PC} = 135$ Hz, ${}^{2}J_{PP} = -12.8$ Hz). Figure S31. AA'X (OCH ₂), C2' and C3' false multiplets observed in ${}^{13}C$ NMR spectra of (a) disulfane 2c (${}^{3}J_{PP} = -4$ Hz) (b) sulfane <i>cis</i> - 3c (${}^{2}J_{PP} = -21$ Hz) and	S23							
sulfane <i>trans</i> - 3c (${}^{2}J_{PP}$ = -14 Hz) caused by second-order effects of phosphorus atoms magnetic non-equivalence.	S23							
Table S1. Calculated and experimental ³¹ P NMR parameters for cyclic 2 and 3	S24							
IR and Raman spectra	S25-S27							
Figure S32. IR spectrum of disulfane 2a Figure S33. Raman spectrum of disulfane 2a Figure S34. IR spectrum of disulfane 2b Figure S35. IR spectrum of disulfane 2c Figure S36. Raman spectrum of disulfane 2c	S25 S25 S26 S27 S27							
X-Ray structural analysis	C20 C22							
	328-333							
 Figure S37. View of structure 2a showing atom labelling scheme. Figure S38. View of structure 2b showing atom labelling scheme. Figure S39. View of structure 2b' showing atom labelling scheme. Figure S40. View of structure 2c showing atom labelling scheme. Figure S41. View of structure 2d_triclinic showing atom labelling scheme. Figure S42. View of structure 2d_monoclinic showing atom labelling scheme. Figure S43. View of structure trans-3a showing atom labelling scheme. Figure S44. View of structure cis-3a showing atom labelling scheme. Figure S45. View of structure trans-3b showing atom labelling scheme. Figure S46. View of structure cis-3b showing atom labelling scheme. 	S28-533 S28 S29 S29 S30 S30 S31 S31 S31 S32 S32							

Figure S48. View of structure <i>cis</i> -3c showing atom labelling scheme.	S33						
Table S2 . Details of the X-ray data collections and refinements for cyclic disulfanes 2a-d*							
Table S3. Details of the X-ray data collections and refinements for cyclic sulfanes 3							
Table S4. Geometric parameters for cyclic disulfanes 2 and a reference, acyclic structure	S36						
 Table S5. Geometric parameters for cyclic sulfanes 3 Table S6. Hydrogen-bond geometry (Å, °) for investigated cyclic disulfanes 2. Table S7. Hydrogen-bond geometry (Å, °) for investigated sulfides 3 Table S8. Transannular hydrogens and transannular H-H repulsive and H-S attractive interactions taken from X-Ray structures and from calculated 							
structures (in brackets) of 2 and 3	\$45-\$48						
Figure S49. Dipole moment and its orientation for <i>cis</i> -3a Figure S50. Dipole moment and its orientation for <i>trans</i> -3a Figure S51. Dipole moment and its orientation for <i>cis</i> -3b Figure S51. Dipole moment and its orientation for <i>trans</i> -3b Figure S53. Dipole moment and its orientation for <i>cis</i> -3c Figure S54. Dipole moment and its orientation for <i>trans</i> -3c	S46 S46 S47 S47 S47 S48 S48						

Materials

Merck silica gel (particle size 0.04–0.063 mm) was used for conventional silica gel chromatography, while thin-layer chromatography was performed using Merck silica-gel 60 F254 coated on aluminium sheets. THF was distilled from potassium-benzophenone ketyl. Lawesson's reagent (Sigma-Aldrich) was recrystallized from chlorobenzene prior to use. Ethylene glycol, neopentyl glycol, 1,4-butanediol, 1,6-hexanediol and 2-chloro-*N*-methylpyridinium iodide (Mukaiyama's reagent MR) were commercially available (Sigma-Aldrich) and were used as received. Ethyl 3-hydroxy-2-(hydroxymethyl)propanoate was prepared according to a reported procedure.¹ Cyclic disulfanes **2a**, **2b** and **2c** were obtained using the previously described procedure ^{8, 12} and acyclic **2h** according to Grossmann's procedure ²².

Instrumentation

NMR spectra were recorded on a Varian Unity Inova 500 MHz and on a Bruker AVANCE 400 MHz spectrometers with TMS or H₃PO₄ as external standards. ¹H and ¹³C spectra were obtained in CDCl₃ and ³¹P NMR spectra in CDCl₃ or MeCN/C₆D₆ 10:1 (v/v) solutions. The assignment of the chemical shifts and coupling constants of the complex spin systems formed by the OCH₂ protons in cyclic disulfanes 2 and sulfanes 3 was made by ¹H, ¹H-COSY and decoupled ³¹P and/or ¹H NMR experiments. The couplings ${}^{n}J_{PC}$ observed as deceptive triplets or quintets, indicating the second-order effects, were described as multiplets (m) and their values were estimated by measuring the distances between the external transitions of the respective multiplets. IR spectra were recorded on a Thermo Scientific Nicolet 6700 spectrometer outfitted with a Smart Orbit diamond ATR cell or on a FTIR spectrometer (ATR method: NICOLET iS5: Thermo Fisher Scientific, Waltham, MA, USA) at wavenumbers of 400 to 4000 cm⁻¹. Powder samples of pure analyte were pressed onto the cell window. Raman spectra of crystals were recorded with an Aramis Horiba Jobin-Yvon micro-Raman spectrometer, using a solid state 500 mW visible laser operating at 532 nm. MS/MS positive ion mode mass spectra (70-120 V) were obtained using a 4000 Q TRAP hybrid triple quadrupole linear ion trap mass spectrometer (Applied Biosystems/MDS Sciex).

X-ray analyses were carried out using KUMA KM4 CCD (6 cases) or Stoe IPDS instruments (4 cases, see Supp. Info.). KUMA: Diffraction data were recorded at 120.0 (2) K or at room temperature 293.0 (2) K on a KUMA KM4 (Wrocław, Poland) diffractometer with graphite-monochromated Mo Ka radiation (0.71073 Å), equipped with a Sapphire 2 CCD camera (Oxford Diffraction, Yarnton, England). Data collection was performed using CrysAlisPro (Agilent Technologies, 2013) in the ω -scan mode. Analytical absorption correction was applied for all strongly absorbing crystals.

Stoe: Diffraction intensity data were collected on an IPDS 2T dual-beam diffractometer (Stoe & Cie GmbH, Darmstadt, Germany) at 120.0 (2) K with Mo K α radiation of a microfocus X-ray source (GeniX 3D Mo High Flux, Xenocs, Sassenage, 50 kV, 1.0 mA, λ = 0.71069 Å). The crystal was thermostated in a nitrogen stream at 120 K using a Cryo-Stream-800 device

¹ S. Yoshida, K. Obitsu, Y. Hayashi, M. Shibazaki, T. Kimura, T. Takahashi, T. Asano, H. Kubota, and T. Mukuta, *Org. Process Res. Dev.*, 2012, **16**, **1527–1537**.

(Oxford CryoSystem, UK) during the entire experiment. Data collection and reduction were controlled by X-Area_1.75 (Stoe, 2015). An absorption correction was performed on the integrated reflections by a combination of frame scaling, reflection scaling and a spherical absorption correction. Outliers have been rejected according to Blessing's method (Blessing, 1997).

Characterization data for compounds 2b, 2b', 2d, 3a-3c and 4a

8-Ethoxycarbonyl-2,5-*bis***(4-methoxyphenyl)-8-methyl-1,6,3,4,2,5dioxadithiadiphosphonane 2,5-disulfide (2b'). Yield:** 0.468 g (85%); mp 112 °C (from ethyl acetate-cyclohexane). NMR (δ in ppm): ¹H NMR (CDCl₃) 1.32 (t, 3H, CH₃), 3.29 (m, 1H, C2H), 3.87 and 3.88 (2 x s, OCH₃), 4.29 (m, 2H, OCH₂CH₃), 4.49 (ddd, ²J_{HH} = 10.2 Hz, ³J_{HH} = 5.3 Hz, ³J_{HP} = 1.5 Hz, 1H, C1/3H_{eq1}), 4.66 (ddd, ²J_{HH} = 10.2 Hz, ³J_{HH} = 2.0 Hz ³J_{HP} = 1.5 Hz, 1H, C1/3H_{eq2}), 4.82 (ddd, ²J_{HH} = 10.2 Hz, ³J_{HH} = 7.1 Hz, ³J_{HH} = 3.0 Hz, 1H, C1/3H_{ax2}), 7.01 (dd, ³J_{HH} = 8.8 Hz, ⁴J_{HP} = 3.9 Hz, 2H, C3'/5'), 7.02 (dd, ³J_{HH} = 1.0 Hz, 1H, C1/3H_{ax2}), 7.01 (dd, ³J_{HH} = 8.8 Hz, ⁴J_{HP} = 3.9 Hz, 2H, C3'/5'), 7.87 (dd, ³J_{HP} = 13.7 Hz, ³J_{HH} = 8.8 Hz, 2H, C2'/6'); ¹³C NMR (CDCl₃) 14.44 (CH₃), 44.48 (t, ³J_{CP} = 10.1 Hz, CH), 55.79 and 55.80 (OCH₃), 60.62 (d, ²J_{CP} = 4.3 Hz, POCH₂), 62.03 (COOCH₂), 114.43 (d, *J* = 16.7 Hz, C3'/5'), 114.46 (d, *J* = 16.8 Hz, C3''/5''), 124.03 (d, *J* = 13.5 Hz, C2''/6''), 163.72 (C4''), 163.75 (C4''), 169.23 (C=O); ³¹P {¹H} NMR (CDCl₃) 88.9 (³J_{PP} = 4.2 Hz), 89.9 (³J_{PP} = 4.2 Hz); ³¹P NMR (nodec): 88.9 (tddtd, ³J_{PHaryl} = 14.1 Hz, ³J_{PHalkyl} = 13.3 Hz, ³J_{PP} = 4.2 Hz); ³¹P NMR (nodec): 88.9 (tddtd, ³J_{PHaryl} = 14.1 Hz, ³J_{PHalkyl} = 13.3 Hz, ³J_{PP} = 4.2 Hz, ⁴J_{PHaryl} = 3.9 Hz, ³J_{PHaryl} = 14.1 Hz, ³J_{PHalkyl} = 13.3 Hz, ³J_{PP} = 4.2 Hz, ⁴J_{PHaryl} = 3.9 Hz, ³J_{PHalkyl} = 15.5 Hz). MS calcd for [C₂₀H₂₄O₆P₂S4]⁺ (M)⁺: 549.99; found: 551.1 [M+H]⁺.

2,5-*bis*(**4-methoxyphenyl**)-**1,6,3,4,2,5-***dioxadithiadiphosphacyclododecane* **2,5-***disulfide* (**2d**). Yield: 0.094 g (18%); mp 157-159 °C (from chloroform-cyclohexane). NMR (δ in ppm): ¹H NMR (CDCl₃) 1.67 (m, 4H), 1.82 (m, 2H), 2.09 (m, 2H), 3.84 (s, 6H, OCH₃), 4.27 (dddd, ³*J*_{HH} = 11.6 Hz, ²*J*_{HH} = 10.0 Hz, ³*J*_{HP} = 5.4 Hz, ³*J*_{HH} = 2.2 Hz, 2H, H_A, 2H), 4.49 (ddt, ²*J*_{HH} = 10.0 Hz, ³*J*_{HP} = 9.3 Hz, ³*J*_{HH} = 3.5 Hz, 2H, H_B), 7.01 (dd, ³*J*_{HH} = 8.8 Hz, ⁴*J*_{HP} = 3.9 Hz, 4H), 7.83 (dd, ³*J*_{HP} = 13.7 Hz, ³*J*_{HH} = 8.8 Hz, 4H); ¹³C NMR (CDCl₃): 21.42 (C3), 28.59 (d, *J* = 11.4 Hz, C2), 55.76 (C-7^c), 63.79 (m, *J* = 4.8 Hz, C1), 114.47 (d, *J* = 17.6 Hz, C-3^c/5^c), 124.52 (d, *J* = 134 Hz, C-1^c), 133.33 (d, *J* = 14.5 Hz, C-2^c/6^c), 163.49 (C-4^c); ³¹P{¹H} NMR (CDCl₃): 89.99 (³*J*_{PP} = 4 Hz). Calc. for C₂₀H₂₆O₄P₂S₄: 520.02. Found: 521.0 [M+H]⁺.

cis-2,4-*bis*(4-methoxyphenyl)-1,5,3,2,4-dioxathiadiphosphepane 2,4-disulfide (*cis*-3a). Yield: 0.039 g (9%); colourless needles; mp 133-134 °C (from ethyl acetate-hexane); $R_f = 0.06$ (chloroform-hexane 1:1), $R_f = 0.29$ (hexane-ethyl acetate 7:3). NMR (δ in ppm): ¹H NMR (CDCl₃) 3.83 (s, 6H, OCH₃), 4.48 (m, 2H), 5.17 (m, 2H), 6.79 (dd, ³J_{HH} = 8.8 Hz, ⁴J_{HP}= 3.4 Hz, 4H), 7.62 (dd, ³J_{HP} = 14.7 Hz, ³J_{HH} = 8.8 Hz, 4H); ¹³C NMR (CDCl₃) 55.49 (CH₃O), 65.18 (d, ²J_{CP} = 7 Hz, OCH₂), 113.84 (d, ³J_{CP} = 17.0 Hz, C-3'/5'), 126.62 (d, ¹J_{CP} = 135 Hz, C-1'), 132.69 (m, ²J_{CP} = 14.5 Hz, C2'/6'), 163.09 (d, ⁴J_{CP} = 3.4 Hz, C-4'); ³¹P {¹H} NMR (MeCN-CH₂Cl₂1:1, 10% C₆D₆) 85.92. Calc. for C₁₆H₁₈O₄P₂S₃: 431.98. Found: 433.0 [M+H]⁺.

trans-2,4-*bis*(4-methoxyphenyl)-[1,5,3,2,4-dioxathiadiphosphepane 2,4-disulfide (*trans*-3a). Yield: 0.329 g (76%); colourless needles; mp 129-130 °C (from ethyl acetate-hexane); $R_f = 0.15$ (chloroform-hexane 1:1), $R_f = 0.53$ (hexane-ethyl acetate 7:3); NMR (δ in ppm): ¹H NMR (CDCl₃) 3.86 (s, 6H, OCH₃), 4.32 (m, 2H), 5.23 (m, 2H), 6.99 (dd, ³J_{HH} = 8.8 Hz, ⁴J_{HP}= 3.4 Hz, 4H), 8.13 (dd, ³J_{HP} = 14.7 Hz, ³J_{HH} = 8.8 Hz, 4H); ¹³C NMR (CDCl₃) 55.77

(CH₃O), 66.38 (m, ${}^{2}J_{CP}$ = 7.0 Hz, OCH₂), 114.12 (m, ${}^{3}J_{CP}$ = 16.8 Hz, C-3'/5'), 125.85 (d, ${}^{1}J_{CP}$ = 136.1 Hz, C-1'), 133.88 (m, ${}^{2}J_{CP}$ = 14.2 Hz, C2'/6'), 163.69 (s, C-4'); ${}^{31}P{}^{1}H{}$ NMR (MeCN-CH₂Cl₂1:1, 10% C₆D₆): 89.04 (${}^{2}J_{PP}$ = -13 Hz). Calc. for C₁₆H₁₈O₄P₂S₃: 431.98. Found: 433.0 [M+H]⁺.

cis-2,4-*bis*(4-methoxyphenyl)-7,7-dimethyl-1,5,3,2,4-dioxathiadiphosphocane 2,4disulfide (*cis*-3b). Yield: 0.186 g (43%); colourless prisms; mp 196-198 °C (from ethyl acetate-cyclohexane); $R_f = 0.50$ (hexane-ethyl acetate 7:3). NMR (δ in ppm): ¹H NMR (CDCl₃) 1.01 and 1.41 (2 x s, 6H, CH₃C), 3.76 (s, 6H, OCH₃), 3.83 (dd, ²*J*_{HH} = 10.7 Hz, ³*J*_{HP} = 7.3 Hz, 2H, H_A), 4.52 (dd, ²*J*_{HH} = 10.7 Hz, ³*J*_{HP} = 18.6 Hz, 2H, H_B), 6.53 (dd, ³*J*_{HH} = 8.8 Hz, ⁴*J*_{HP} = 3.0 Hz, 4H), 7.34 (dd, ³*J*_{HP} = 14.1 Hz, ³*J*_{HH} = 8.8 Hz, 4H); ¹H NMR (C₆D₆) 0.13 and 0.95 (2 x s, 6H, CH₃C), 3.07 (s, 6H, OCH₃), 3.32 (dd, ²*J*_{HH} = 10.9 Hz, ³*J*_{HP} = 7.5 Hz, 2H, H_A), 4.56 (dd, ²*J*_{HH} = 11.0 Hz, ³*J*_{HP} = 18.8 Hz, 2H, H_B), 6.09 (dd, ³*J*_{HH} = 8.7 Hz, ⁴*J*_{HP} = 3.0 Hz, 4H), 7.31 (dd, ³*J*_{HP} = 14.0 Hz, ³*J*_{HH} = 8.7 Hz, 4H); ¹³C NMR (CDCl₃) 21.68 and 21.79 (2 x s, CH₃), 36.18 (m, ³*J*_{CP} = 9.6 Hz, *C*CH₃), 55.37 (s, CH₃O), 74.02 (m, ²*J*_{CP} = 6.7 Hz, OCH₂), 113.88 (m, ³*J*_{CP} = 16.8 Hz, C-3'/5'), 124.89 (d, ¹*J*_{CP} = 139.7 Hz, C-1'), 132.18 (m, ²*J*_{CP} = 13.8 Hz, C2'/6'), 162.65 (m, ⁴*J*_{CP} = 3.5 Hz, C-4'); ³¹P{¹H} NMR (MeCN-CH₂Cl₂1:1, 10% C₆D₆) 86.09. Calc. for C₁₉H₂₄O₄P₂S₃: 474.03. Found: 475.1 [M+H]⁺.

trans-2,4-*bis*(4-methoxyphenyl)-7,7-dimethyl-1,5,3,2,4-dioxathiadiphosphocane 2,4-disulfide (*trans*-3b). Yield: 0.242 g (51%); colourless needles; mp 161-163 °C (from ethyl acetate-hexanes); $R_f = 0.58$ (hexane-ethyl acetate 7:3). NMR (δ in ppm): ¹H NMR (CDCl₃) 1.17 (s, 6H, CCH₃), 3.74 (dd, ²J_{HH} = 11.0, ³J_{HP} = 8.0 Hz, 2H), 3.87 (s, 6H, OCH₃), 4.74 (dd, ²J_{HH} = 11.0 Hz, ³J_{HP} = 18.0 Hz, 2H), 6.98 (dd, ³J_{HH} = 8.8 Hz, ⁴J_{HP} = 2.9 Hz, 4H), 7.93 (dd, ³J_{HP} = 14.1 Hz, ³J_{HH} = 8.8 Hz, 4H, ArH); ¹H NMR (C₆D₆) 0.64 (s, 6H, CCH₃), 3.05 (s, 6H, OCH₃), 3.37 (dd, ²J_{HH} = 10.8, ³J_{HP} = 7.3 Hz, 2H), 4.76 (dd, ²J_{HH} = 10.8 Hz, ³J_{HP} = 17.5 Hz, 2H), 6.61 (dd, ³J_{HH} = 8.8 Hz, ⁴J_{HP} = 3.0 Hz, 4H), 8.07 (dd, ³J_{HP} = 13.9 Hz, ³J_{HH} = 8.7 Hz, 4H, ArH); ¹³C NMR (CDCl₃) 22.37 (s, CH₃), 36.24 (m, ³J_{CP} = 10.5 Hz, CCH₃), 55.72 (s, C-7'), 71.82 (m, ²J_{CP} = 6.4 Hz, OCH₂), 114.05 (m, ³J_{CP} = 16.8 Hz, C-3'/5'), 125.35 (d, ¹J_{CP} = 136 Hz, C-1'), 133.34 (m, ²J_{CP} = 14.0 Hz, C2'/6'), 163.47 (m, ⁴J_{CP} = 3.5 Hz, C-4'); ³¹P {¹H} NMR (MeCN-CH₂Cl₂1:1, 10% C₆D₆) 87.70. Calc. for C₁₉H₂₄O₄P₂S₃: 474.03. Found: 475.1 [M+H]⁺.

cis-2,4-*bis*(4-methoxyphenyl)-1,5,3,2,4-dioxathiadiphosphonane 2,4-disulfide (*cis*-3c). Yield: 0.170 g (37%); colourless prisms; mp 197-199 °C (from benzene-cyclohexane); R_f = 0.52 (hexane-ethyl acetate 7:3). NMR (δ in ppm): ¹H NMR (CDCl₃) 2.17 (m, 2H, CH₂), 2.27 (m, 2H, CH₂), 3.76 (s, 6H, OCH₃), 4.21 (m, 2H, OCH₂), 4.91 (m, 2H, OCH₂), 6.55 (dd, ³J_{HH} = 8.8 Hz, ⁴J_{HP} = 3.5 Hz, 4H, ArH), 7.37 (dd, ³J_{HP} = 14.2 Hz, ³J_{HH} = 8.8 Hz, 4H, ArH); ¹³C NMR (CDCl₃) 27.90 (m, ³J_{CP} = 4.4 Hz, CH₂CH₂O), 55.15 (s, CH₃O), 67.38 (m, ²J_{CP} = 7.2 Hz, OCH₂), 113.55 (m, ³J_{CP} = 16.9 Hz, C-3'/5'), 125.61 (m, ¹J_{CP} = 137.4 Hz, C-1'), 132.06 (m, ²J_{CP} = 14.0 Hz, C2'/6'), 162.27 (m, ⁴J_{CP} = 3.7 Hz, C-4'); ³¹P{¹H} NMR (MeCN-CH₂Cl₂1:1, 10% C₆D₆) 85.6 (²J_{PP} = -21 Hz). Calc. for C₁₈H₂₂O₄P₂S₃: 460.02. Found: 461.1 [M+H]⁺.

trans-2,4-*bis*(4-methoxyphenyl)-1,5,3,2,4-dioxathiadiphosphonane 2,4-disulfide (*trans*-3c). Yield: 0.110 g (24%); colourless needles; mp 171-172 °C (from ethyl acetate-cyclohexane); $R_f = 0.57$ (hexane-ethyl acetate 7:3). NMR (δ in ppm): ¹H NMR (CDCl₃) 2.06 (m, 2H, CH₂), 2.22 (m, 2H, CH₂), 3.86 (s, 6H, OCH₃), 4.20 (m, 2H, OCH₂), 4.95 (m, 2H, OCH₂), 6.96 (dd, ³*J*_{HH} = 8.8 Hz, ⁴*J*_{HP} = 3.5 Hz, 4H, ArH), 7.89 (dd, ³*J*_{HP} = 14.2 Hz, ³*J*_{HH} = 8.8 Hz, 4H, ArH); ¹³C NMR (CDCl₃) 27.36 (m, ³*J*_{PC} = 5.3 Hz, CH₂CH₃), 55.69 (s, CH₃O), 68.09 (m, ²*J*_{CP} = 7.1 Hz, OCH₂), 114.05 (m, ³*J*_{CP} = 16.8 Hz, C-3'/5'), 127.66 (d, ¹*J*_{CP} = 135.2 Hz, C-1'), 133.08 (m, ²*J*_{CP} = -14 Hz). Calc. for C₁₈H₂₂O₄P₂S₃: 460.02. Found: 461.1 [M+H]⁺.

2-(4-methoxyphenyl)-1,3,2-dioxaphospholane 2-sulfide (**4a**) (Method B). Yield: 0.075 g (30%); colourless prisms; mp 84-85 °C (from ethyl acetate-cyclohexane, lit. ¹⁴ m.p 76 °C); R_f = 0.27 (hexane-ethyl acetate 7:3). NMR (δ in ppm): ¹H NMR (CDCl₃) 3.89 (s, 3H, OCH₃), 4.43 (m, 2H, OCH₂), 4.62 (m, 2H, OCH₂), 6.99 (dd, ³*J*_{HH} = 8.8 Hz, ⁴*J*_{HP} = 3.4 Hz, 4H, ArH), 7.85 (dd, ³*J*_{HP} = 14.3 Hz, ³*J*_{HH} = 8.8 Hz, 4H, ArH); ¹³C NMR (CDCl₃) 55.32 (s, CH₃O), 66.77 (d, ²*J*_{CP} = 7.1 Hz, OCH₂), 113.82 (d, ³*J*_{CP} = 16.5 Hz, C-3'/5'), 123.97 (d, ¹*J*_{CP} = 145.0 Hz, C-1'), 133.28 (d, ²*J*_{CP} = 14.4 Hz, C2'/6'), 163.26 (d, ⁴*J*_{CP} = 3.3 Hz, C-4'); ³¹P NMR (CDCl₃) 106.5 (tddd, ³*J*_{PH} = 23.4, ³*J*_{PH'} = 14.3, ⁴*J*_{PH'} = 3.4, ³*J*_{PH} = 1.4 Hz).

NMR Spectra and NMR spectral parameters of Compounds 2 - 4

Figure S3. ^{31}P $\{^{1}H\}$ NMR spectrum of 2b' in CDCl3

Figure S4. ¹H NMR spectrum of 2d in CDCl₃

Figure S5. $^{\rm 13}C$ NMR spectrum of 2d in CDCl_3

Figure S6. ³¹P NMR spectrum of 2d in CDCl₃

Figure S7. ¹H NMR spectrum of *cis*-3a in CDCl₃

Figure S8. ¹³C NMR spectrum of *cis*-3a in CDCl₃

Figure S9. ¹H NMR spectrum of *trans*-3a in CDCl₃

Figure S10. ¹³C NMR spectrum of *trans*-3a in CDCl₃

130 120 Figure S14. ¹³C NMR spectrum of *trans*-3b in CDCl₃

Figure S15. ¹H NMR spectrum of a crude mixture of *cis*-3b and *trans*-3b (4:1) in C₆D₆

Figure S16. ³¹P NMR spectrum of a crude mixture of *cis*-3b and *trans*-3b (4:1) in C₆D₆

Figure S18. ¹³C NMR spectrum of *cis*-3c in CDCl₃

Figure S20. ¹³C NMR spectrum of *trans*-3c in CDCl₃

Figure S21. ¹H NMR spectrum of 4a in CDCl₃

Figure S22. ¹³C NMR spectrum of 4a in CDCl₃

Figure S23. Comparing the ¹H NMR (a-b) and ³¹P NMR (c-e) spectra of disulfane **2b** solution in acetone-d₆ recorded at cryogenic temperatures and at room temperature.

Figure S24. ¹H NMR spectra of 2b in C₂Cl₄ recorded at a) 50°C and b) 100°C

Figure S25. ¹H NMR spectra of **2b** in $C_5D_6NO_2$ recorded at (a) 70°C, (b) 110°C, (c) 150°C, (d) 185°C and (e) 185°C for 15 min

Figure S26. 202 MHz ³¹P NMR spectra of the crude reaction mixture of disulfane **2a** and Ph₃P: (a) alone (b) after administration of 1 eq of 2,4-dinitrobenzoic acid in CH_2Cl_2 plus 10% C_6D_6

Figure S27. ³¹P NMR spectra of reaction products obtained using the general procedure (see experimental section), which was intended to give rise to: (a) 14- (¹H decoupled spectrum) and (b) 20-membered disulfanes (non-decoupled spectrum)

Figure S28. 202 MHz ³¹P NMR spectra of the solution of disulfane **2b** in DMSO-d₆ showing the presence of **2b** S-oxides as its initial oxidation products.

Figure S29. Correlations of cyclic disulfanes **2** (except for **2b**') ring size and the difference in chemical shifts for geminal protons $\Delta \delta_{\text{Hax-Heq}}$ (blue line) and for aromatic $\Delta \delta_{\text{Hortho-Hmeta}}$ protons (red line) taken from NMR spectra recorded in CDCl₃ at room temperature.

85.50 85.45 85.40 85.35 85.30 85.25 85.20 85.15 85.10 85.05 85.00 84.95 84.90 84.85 84.80 84.75 84.70 84.65 84.60 84.55 84.50 84.45

Figure S30. 202 MHz ³¹P NMR spectra of sulfane **3c** isomers containing ¹³C satellites showing a difference in P-P couplings: a) *cis*-**3c** (dd, ¹ J_{PC} = 135 Hz, ² J_{PP} = -19.3 Hz) and b) *trans*-**3c** (dd, ¹ J_{PC} = 135 Hz, ² J_{PP} = -12.8 Hz).

Figure S31. AA'X (OCH₂), C2' and C3' false multiplets observed in ¹³C NMR spectra of (a) disulfane **2c** (${}^{3}J_{PP} = 4$ Hz), (b) sulfane *cis*-**3c** (${}^{2}J_{PP} = -21$ Hz), and sulfane *trans*-**3c** (${}^{2}J_{PP} = -14$ Hz) caused by second-order effects of phosphorus atoms magnetic non-equivalence.

	P1/P2	³¹ P Chem	³¹ P Chem	$^{n}J_{\mathrm{PP}}$	$^{ m n}J_{ m PP}$	${}^{\rm n}J_{\rm exp}/{}^{\rm n}J_{\rm calc}$
	absolute	shift	shift	Calcd	Exp	*
	magnetic	Calcd*	Exp			
	shielding	(mean				
	σ_x calcd	value)				
		$\delta_x = \sigma_{std} - \sigma_x$				
2a	243.3/243.5	98.3	88.0	-0.98	4	4.1
2b	234.9/242.4	102.8	88.7	-1.33	4	3.0
2c	237.7/246.5	99.4	89.2	-1.20	4	3.0
2d	236.6/237.2	104.6	90.0	-1.56	4	2.6
cis-3a	240.1/246.3	98.3	85.9	-6.1	NM	NM
cis- 3b	242.0/245.4	97.8	86.1	-6.1	NM	NM
cis-3c	239.3/246.6	98.5	85.6	-6.3	-20.9	3.3
trans-3a	236.4/238.8	103.9	89.0	-5.3	-13.0	2.5
trans-3b	242.9/243.8	98.1	87.7	-5.0	-13.0	2.6
trans-3c	241.6/243.7	98.8	86.5	-5.0	-12.8	2.8
(*) Relative t	o a 85% H ₃ PO ₄ s	tandard ($\sigma_{std} =$	341.5 ppm)			

Table S1 Calculated and experimental ³¹P NMR parameters for cyclic 2 and 3

 H_3PO_4 standard (σ_{std} = 341.5 ppm)

NM - not measured

IR and Raman spectra

Figure S32. IR spectrum (ATR-IR) of disulfane 2a

Figure S33. Raman spectrum of disulfane 2a

Figure S34. IR spectrum (ATR-IR) of disulfane 2b

Figure S35. IR spectrum (ATR-IR) of disulfane 2c

Figure S36. Raman spectrum of disulfane 2c

X-Ray structural analysis

Crystal structures of cyclic disulfanes 2 and sulfanes 3

X-ray structures of cyclic disulfanes have been determined for: **2a**, **2b**, **2b'**, **2c** and two polymorphic forms of **2d** – triclinic and monoclinic. Crystallographic data and refinement details are given in **Table S1**. Molecular views of the structures are presented in Figures S37-S-42.

Figure S37. View of structure **2a** showing atom labelling scheme. Symmetry axis drawn as the green line, only two labels for symmetry equivalent atoms shown. Displacement ellipsoids drawn at 50% probability level.

Figure S38. View of asymmetric unit of structure **2b** showing atom labelling scheme. Displacement ellipsoids drawn at 50% probability level

Figure S39. View of asymmetric unit of structure **2b'** showing atom labelling scheme. Displacement ellipsoids drawn at 50% probability level.

Figure S40. View of asymmetric unit of structure **2c** showing atom labelling scheme. Displacement ellipsoids drawn at 50% probability level.

Figure S41. View of asymmetric unit of structure **2d_triclinic** showing atom labelling scheme. Displacement ellipsoids drawn at 50% probability level.

Figure S42. View of structure **2d_monoclinic** showing atom labelling scheme. Symmetry axis drawn as the green line, only three labels for symmetry equivalent atoms shown. Displacement ellipsoids drawn at 50% probability level.

All the compounds exhibit the *trans* (*anti*) conformation of the anisole residues in relation to the macrocycle and with both P=S groups directed outside the ring. The compounds crystallize in various space groups and with different molecular symmetry, which must be

taken into account during comparison of geometry. Asymmetric unit of **2a** (with the $-CH_2$ -CH₂- organic part of the macrocycle) contains half of the molecule since its symmetry is described by the C_2 point group (Schoenflies) with the two-fold axis passing through the centers of bonds S1—S1#1 and C1—C1#1 (#1 symmcode: 1+y, -1+x, -z). Asymmetric units of **2b**, **2b'**and **2d_triclinic** contain one molecule each. The monoclinic polymorph of **2d** again contains half of the molecule with a two-fold axis passing through bonds S1—S1#1 and C3— C3#1 (where #1 denotes: 1-x, y, $\frac{1}{2}$ -z). Molecular symmetry is also described by the C_2 group.

Structures of disulfanes **3** have been also determined by X-Ray structural analyses in this study. Crystallographic data and refinement details for both conformers of **3a**, **3b** and **3d** are given in Table S2. Molecular views of the structures are presented in Figures S43-S48. In three cases i.e. for **3a_trans**, **3a_cis**, and **3b_cis** the asymmetric unit is composed of two molecules.

Figure S43. View of structure **3a_trans** showing atom labelling scheme. Only one molecule from the asymmetric unit is shown. Displacement ellipsoids drawn at 50% probability level.

Figure S44. View of structure **3a_cis** showing atom labelling scheme. Only one molecule from the asymmetric unit is shown (out of two). Displacement ellipsoids drawn at 50% probability level.

Figure S45. View of structure **3b_trans** showing atom labelling scheme. The asymmetric unit contains one molecule. Displacement ellipsoids drawn at 50% probability level.

Figure S46. View of structure **3b_cis** showing atom labelling scheme. Only one molecule from the asymmetric unit is shown (out of two, Z' = 2). Displacement ellipsoids drawn at 50% probability level.

Figure S47. View of asymmetric unit of structure **3c_trans** showing atom labelling scheme. Displacement ellipsoids drawn at 50% probability level.

Figure S48. View of asymmetric unit of structure **3c_cis** showing atom labelling scheme. Displacement ellipsoids drawn at 50% probability level.

Ring conformations. Having the X-ray data we can analyse conformations of 8-, 9-, and 10and 12-membered bis(anisylphosphonothioyl) disulfanes, for **2a**, **2b**, **2c** and **2d**, respectively. For definitions of conformations for large macrocycles see: ring puckering analysis [e.g. D. Cremer & J.A. Pople, J.Amer.Chem.Soc., 97, (1975), 1354-1358, D. Cremer, Acta Cryst. (1984). B40, 498-500, G.G. Evans & J.A. Boeyens, Acta Cryst. (1989), B45, 581-590]. A large interring P-S-S-P torsion angle, increasing with the ring size from *ca* 94° to *ca* 125°, is the most characteristic structural feature of cyclic disulfanes **2**. *Bonds and angles comparative study*. Related geometric parameters for all disulfanes **2** are gathered in Table S4.

Tables

	2a	2b	2b'	2c	2d_triclinic	2d_monoclinic
Crystal data						
Chemical formula	$C_{16}H_{18}O_4P_2S_4$	$C_{19}H_{24}O_4P_2S_4$	$C_{20}H_{24}O_6P_2S_4\\$	$C_{18}H_{22}O_4P_2S_4$	$C_{20}H_{26}O_4P_2S_4\\$	$C_{20}H_{26}O_4P_2S_4\\$
M _r	464.48	506.56	550.57	492.53	520.59	520.59
Crystal system, space group	Tetragonal, $P4_32_12$	Monoclinic, $P2_1/c$	Triclinic, P-1	Monoclinic, $P2_1/c$	Triclinic, P-1	Monoclinic, $C2/c$
Temperature (K)	296	130	120	120	120	120
<i>a</i> , <i>b</i> , <i>c</i> (Å)	7.2415 (3), 7.2415 (3), 39.516 (2)	12.3171 (12), 9.1385 (5), 21.439 (2)	6.8942 (8), 9.3182 (11), 19.921 (3)	9.4262 (6), 13.3761 (8), 17.7998 (13)	10.4186 (13), 10.5778 (11), 12.5703 (15)	12.6554 (19), 8.5028 (9), 23.058 (4)
$\alpha,\beta,\gamma(^\circ)$	90, 90, 90	90, 96.512 (8), 90	95.844 (10), 90.407 (10), 93.486 (10)	90, 90.068 (7), 90	71.900 (9), 67.807 (9), 82.881 (9)	90, 101.230 (12), 90
$V(\text{\AA}^3)$	2072.2 (2)	2397.6 (4)	1270.6 (3)	2244.3 (3)	1219.2 (3)	2433.7 (6)
Ζ	4	4	2	4	2	4
Radiation type	Μο Κα	Μο Κα	Μο Κα	Μο Κα	Μο Κα	Μο Κα
$\mu (mm^{-1})$	0.63	0.55	0.53	0.59	0.55	0.55
Crystal size (mm)	0.44 × 0.42 × 0.03	0.34 × 0.03 × 0.02	$0.35 \times 0.29 \times 0.17$	$0.21 \times 0.20 \times 0.14$	0.31 × 0.15 × 0.05	$0.34 \times 0.15 \times 0.11$
Data collection						
Diffractometer	KM4CCD, Sapphire2	STOE <i>IPDS</i> 2T diffractometer	KM4CCD, Sapphire2	KM4CCD, Sapphire2	STOE <i>IPDS</i> 2T diffractometer	STOE <i>IPDS</i> 2T diffractometer
Absorption correction	Multi-scan	None	Multi-scan	Analytical	None	None
T_{\min}, T_{\max}	0.689, 0.98	-	0.891, 1	0.893, 0.929	-	-
No. Of measured, independent and observed [$I > 2\sigma(I)$] reflections	14211, 2019, 1839	9945, 4378, 4046	7730, 4687, 3746	9496, 4047, 3309	9505, 5339, 4702	8581, 3264, 2762
R _{int}	0.036	0.017	0.028	0.051	0.109	0.027
$(\sin \theta / \lambda)_{max} (\text{\AA}^{-1})$	0.617	0.608	0.604	0.606	0.647	0.686
Refinement						
$R[F^2 > 2\sigma(F^2)],$ wR(F ²), GooF	0.038, 0.092, 1.09	0.025, 0.068, 1.07	0.054, 0.147, 1.05	0.082, 0.241, 1.05	0.068, 0.193, 1.07	0.027, 0.074, 1.05
No. Of reflections	2019	4378	4687	4047	5339	3264
No. Of parameters	120	266	289	256	273	137
H-atom treatment	parameters constrained	parameters constrained	parameters constrained	parameters constrained	parameters constrained	parameters constrained
$ \begin{array}{c} \Delta \\ \hline \\ (e \ \text{\AA}^{-3}) \end{array} \\ \end{array} \qquad \qquad$	0.33, -0.22	0.35, -0.22	1.37, -0.34	2.27, -0.84	0.82, -0.84	0.36, -0.27
Absolute structure	Refined as an inversion twin.	_	_	_	_	_
Abs. str. parameter	0.45 (17)	_	_	-	_	_
CCDC number	719124	1560159	719125	1558043	1558050	1558049

* structures of 2a and 2c were already published (W. Przychodzeń, J. Chojnacki, Acta Cryst., 2018, E74, 212–216)

	3a_trans	3a_cis	3b_trans	3b_cis	3c_trans	3c_cis
	Crystal data					
Chemical formula	$\begin{array}{c} C_{16}H_{18}O_4P_2\\ S_3 \end{array}$	$C_{16}H_{18}O_4P_2S_3$	$C_{19}H_{24}O_4P_2S_3$	$C_{19}H_{24}O_4P_2S_3$	$C_{18}H_{22}O_4P_2S_3$	$C_{18}H_{22}O_4P_2S_3$
M _r	432.42	432.42	474.5	474.5	460.47	460.47
Crystal system, space group	Monoclinic, $P2_1/c$	Orthorhombic, <i>Pna</i> 2 ₁	Monoclinic, Pc	Monoclinic, $P2_1/n$	Triclinic, P-1	Triclinic, P-1
Temperature (K)	130	150	293	293	293	120
a, b, c (Å)	7.2217 (5), 15.7169 (6), 33.5977 (17)	20.284 (6), 21.511 (6), 8.717 (4)	14.6528 (5), 9.1347 (3), 17.8598 (6)	11.2880 (18), 18.3863 (13), 12.2511 (11)	8.5551 (6), 10.9717 (8), 13.0957 (10)	8.7882 (11), 8.8878 (10), 14.120 (2)
α, β, γ (°)	90, 92.598 (5), 90	90, 90, 90	90, 108.073 (4), 90	90, 112.627 (13), 90	113.352 (7), 104.434 (7), 93.127 (6)	73.295 (11), 75.044 (11), 81.888 (9)
$V(\text{\AA}^3)$	3809.5 (4)	3803 (2)	2272.57 (14)	2346.9 (5)	1076.52 (15)	1017.8 (2)
Ζ	8	8	4	4	2	2
Radiation type	Μο Κα	Μο <i>Κ</i> α	Μο Κα	Μο Κα	Μο Κα	Μο Κα
μ (mm ⁻¹)	0.58	0.58	0.49	0.47	0.51	0.54
Crystal size (mm)	$\begin{array}{c} 0.29 \times 0.05 \\ \times \ 0.02 \end{array}$	$\begin{array}{c} 0.21\times 0.08\times \\ 0.07\end{array}$	$0.29 \times 0.17 \times 0.11$	$\begin{array}{c} 0.13\times 0.04\times \\ 0.02\end{array}$	$\begin{array}{c} 0.41 \times 0.26 \times \\ 0.02 \end{array}$	0.44 × 0.23 × 0.11
Data collection						
Diffractometer	STOE <i>IPDS</i> 2T diffractome ter	STOE <i>IPDS</i> 2T diffractometer	KM4CCD, Sapphire2	KM4CCD, Sapphire2	KM4CCD, Sapphire2	STOE <i>IPDS</i> 2T diffractometer
Absorption correction	Integration	None	Multi-scan	Multi-scan	Multi-scan	Integration
T_{\min}, T_{\max}	0.834, 0.973	-	0.852, 1	0.889, 1	0.551, 1	0.971, 0.992
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	15794, 7366, 5071	17031, 8098, 6283	15538, 7935, 6588	11898, 4297, 2318	6586, 3990, 2275	14738, 5492, 3596
R _{int}	0.057	0.052	0.036	0.061	0.092	0.064
$(\sin \theta / \lambda)_{max} (\text{\AA}^{-1})$	0.617	0.650	0.617	0.606	0.606	0.688
Refinement						
$R[F^2 > 2\sigma(F^2)],$ wR(F ²), GooF	0.053, 0.127, 1.02	0.054, 0.129, 1.05	0.052, 0.133, 1.05	0.061, 0.173, 1.07	0.064, 0.18, 1.03	0.061, 0.173, 0.94
No. of reflections	7366	8098	7935	4297	3990	5492
No. of parameters	455	456	506	253	244	246
No. of restraints	0	1	2	0	0	0
H-atom treatment	parameters constrained	parameters constrained	parameters constrained	parameters constrained	parameters constrained	parameters constrained
$\begin{array}{c} \Delta \rangle_{\text{max}}, \Delta \rangle_{\text{min}} \\ (e \text{ Å}^{-3}) \end{array}$	0.62, -0.43	0.74, -0.36	0.55, -0.38	0.32, -0.45	0.51, -0.58	1.49, -0.66

Table S3. Details of the X-ray data collections and refinements for cyclic sulfanes 3

Absolute structure	_	Refined as an inversion twin.	Refined as an inversion twin.	_	_	_
Absolute structure parameter	_	0.11 (13)	0.05 (12)	_	_	_
CCDC number	1558051	1561560	944069	944068	1558052	1558054

	2a	2b	2b'	2c	2d_tri	2d_mono	ref [Woollins]
independent	1/2	1	1	1	1	1/2	2
molecules, Z'							
Bond lengths,	Å						
P1—S1	2.101(1)	2.1083(6)	2.118(1)	2.117(2)	2.111(1)	2.1088(7)	2.1153(6) and 2.1023(7)
P1=S3 (or $P1=S2 *$)	1.922(2)	1.9276(6)	1.936(1)	1.931(3)	1.9305(9)	1.9299(6)	1.9303(7) and 1.9305(8)
P2—S2	-	2.1085(6)	2.106(1)	2.090(3)	2.1043(9)	-	2.1090(7) and 2.1037(6)
P2=S4	-	1.9248(6)	1.946(1)	1.933(3)	1.9313(9)	-	1.9344(6) and $1.9295(7)$
S1—S2 (S1—S1#1**)	2.068(2)	2.0704(6)	2.081(1)	2.074(3)	2.0705(9)	2.0759(5)	2.0850(8) and $2.0831(7)$
P101	1.584(2)	1.580(1)	1.602(2)	1.580(5)	1.586(2)	1.580(1)	1.583(1) and $1.582(1)$
Р2—О2	-	1.589(1)	1.602(2)	1.582(5)	1.590(2)	-	1.583(1) and $1.585(1)$
P1—C10	1.787(3)	1.780(2)	1.794(4)	1.797(7)	1.780(2)	1.779(1)	1.780(2) and 1.779(2)
P2—C20	-	1.780(1)	1.795(3)	1.794(7)	1.780(3)	-	1.785(2) and $1.784(2)$
valence angles	0						
S1—P1=S3 (S1—P1=S2 *)	104.43(6)	104.82(2)	102.41(5)	104.2(1)	103.16(4)	103.16(2)	103.17(3) and 103.78(3)
S2—P2=S4	-	104.84(2)	104.01(5)	103.0(1)	101.39(4)	-	104.50(3) and $102.64(3)$
S1—P1—O1	106.96(9)	107.32(4)	107.75(9)	108.6(2)	108.65(8)	109.11(4)	105.66(5) and $106.62(5)$
S2—P2—O2	-	106.89(4)	108.32(9)	108.2(2)	109.73(8)	-	107.34(5) and $105.87(5)$
S1—P1—C10	109.6(1)	109.08(5)	108.2(1)	105.2(2)	107.11(9)	107.52(4)	110.47(6) and 108.96(6)
S2—P2—C20	-	109.95(5)	109.1(1)	109.4(2)	108.27(9)	-	109.55(6) and 111.20(6)
S3=P1—C10 (S2=P1—C10 *	*) 116.2(1)	115.95(5)	120.0(1)	118.5(2)	118.55(9)	118.84(5)	116.75(6) and 117.84(7)
S4=P2-C20	-	116.88(5)	117.1(1)	116.5(2)	118.41(9)	-	116.42(6) and 117.76(6)
P1—S1—S2 (P1-S1-S1#1*)	105.16(6)	103.57(2)	104.74(5)	103.1(1)	104.81(4)	105.53(2)	104.65(3) and 102.07(3)
P2—S2—S1	-	104.59(2)	103.23(5)	105.9(1)	107.23(4)	-	103.64(3) and 103.37(2)
Torsion angles.	0						× /
S3=P1-S1-S2 S2=P1-S1-S1#1	164.53(6)	176.23(2)	178.39(5)	-171.0(1)	-163.94(4)	- 161.12(2)	-171.21(3)and -170.28(3)
S1-S2-P2=S4	-	-179.55(2)	176.61(5)	174.9(1)	-166.26(4)	-	-173.52(3)and -172.28(3)
	I						

Table S4. Geometric parameters for cyclic disulfanes **2** and a reference, acyclic structure*

P1-S1-S2-P2	-93.68(6)	-105.86(2)	106.77(5)	-112.9(1)	-114.35(4)	-	-123.47(3)			
P1-S1-S1#1-P#1						124.93(2)	-126.30(3)			
O1-P1-S1-S2	37.5(1)	50.55(5)	-56.7(1)	61.9(2)	70.67(9)	73.08(4)	-46.07(6) and			
O1-P1-S1-S1#1							-47.93(6)			
S1-S2-P2-O2	-	54.46(5)	-57.1(1)	47.5(2)	68.77(9)	-	-44.43(6)and			
							-47.83(5)			
C10-P1-S1-S2	-70.4(1)	-58.99(6)	50.7(1)	-45.7(3)	-38.1(1)	-34.74(5)	63.29(7) and			
C10P1S1-S1#1*							60.13(7)			
C20-P2-S2-S1	-	-53.13(5)	50.9(1)	-60.6(3)	-41.0(1)	-	64.31(7) and			
							60.92(7)			
C11-C10-P1-S3	178.1(3)	46.6(1)	154.0(3)	-153.5(5)	36.9(2)	28.8(1)	-12.3(2) and			
							148.6(1)			
C21-C20-P2-S4	-	24.3(1)	-37.8(3)	-143.6(5)	35.8(2)	-	-17.6(2) and			
							-34.3(2)			
S3P1O3CH3	-178.2(3)	-129.2(1)	-33.9(3)	20.9(5)	42.0(2)	30.18(9)	-4.8(1) and			
S2 P1O2CH3**							-11.3(1)			
S4P2O4CH3	-	21.1(1)	139.4(2)	32.7(5)	-144.7(2)	-	140.6(1) and			
							-38.4(1)			
* structures of 2a a	* structures of 2a and 2c were already published (W. Przychodzeń, J. Choinacki, Acta Cryst., 2018, E74, 212–216)									
** for Z'= ½, #1 f	or 2 a : 1+y, -1	+x, -z; #1 for 2	2d: 1-x, y, $\frac{1}{2}$ -z	(both are 2-fol	ld rotations)		,			

	Cis-3a	Trans-3a	Cis-3b	Trans-3b	Cis-3c	Trans-3c
independent molecules, Z'	2	2	1	2	1	1
Bond lengths, Å						
P1=S2	1.922(2)	1.923(1)	1.926(2)	1.924(3)	1.924(1)	1.927(2)
P2=S3	1.923(3)	1.931(1)	1.920(2)	1.917(3)	1.938(1)	1.918(2)
P3=S5	1.921(3)	1.924(1)	-	1.911(3)	-	-
P4=S6	1.926(2)	1.931(1)		1.921(2)		
P1—S1	2.101(3)	2.124(1)	2.103(2)	2.129(3)	2.130(1) 2.103(1)	2.113(3)
P2—S1	2.110(2)	2.120(1)	2.131(2)	2.118(3)	2.105(1)	2.129(2)
P3—S4	2.111(2)	2.121(1)	-	2.140(2)	-	-
P4—S4	2.099(3)	2.117(1)		2.105(2)		
P101	1.587(4)	1.588(3)	1.578(3)	1.585(5)	1.585(3)	1.586(4)
Р2—О2	1.593(5)	1.589(2)	1.571(3)	1.596(5)	1.584(3)	1.588(4)
P3—O5	1.586(5)	1.594(3)	-	1.582(6)	-	-
P4—O6	1.585(4)	1.592(2)		1.593(5)		
P1—C10	1.788(7)	1.783(3)	1.782(5)	1.792(7)	1.777(3)	1.785(5)
P2—C20	1.782(7)	1.788(3)	1.779(5)	1.780(6)	1.779(3)	1.802(6)
P3—C30	1.771(7)	1.783(3)	-	1.794(7)	-	-
P4—C40	1.794(7)	1.780(3)				
valence angles,	0					

 Table S5. Geometric parameters for cyclic sulfanes 3

S1P1=S2	107.3(1)	116.79(6)	106.05(8)	114.3(1)	105.45(5)	107.64(9)
S1P2=S3	105.1(1)	108.44(5)		105.0(1)	105.77(5)	116.8(1)
S4P3=S5	105.7(1)	115.80(6)	-	115.6(1)	-	-
S4P4=S6	106.7(1)	108.16(6)		105.8(1)		
O1P1=S2	117.3(2)	116.3(1)	116.8(1)	117.2(2)	118.3(1)	117.1(2)
O2P2=S3	117.4(2)	116.8(1)	119.0(1)	117.6(2)	116.8(1)	117.5(2)
O5P3=S5	117.7(2)	116.6(1)	-	117.1(2)	-	-
O6P4=S6	117.3(2)	116.0(1)		117.3(2)		
O1P1—S1	106.3(2)	103.4(1)	106.3(1)	104.7(2)	106.6(1)	105.5(2)
O2P2—S1	106.1(2)	105.4(1)	105.6(1)	104.2(2)	107.4(1)	100.8(2)
O5P3—S4	106.3(2)	104.1(1)	-	104.3(2)	-	-
O6P4—S4	106.0(2)	105.7(1)		105.0(2)		
O1P1C10	98.3(3)	100.9(1)	101.6(2)	102.6(2)	102.7(1)	101.2(2)
O2P2C20	102.5(3)	101.2(1)	101.9(2)	102.3(2)	101.5(1)	103.5(2)
O5P3C30	102.2(3)	100.0(1)	-	1.794(7)	-	-
O6P4C40	98.9(3)	100.9(1)		1.786(8)		
P1-S1-P2	105.73(9)	105.28(5)	108.70(8)	106.4(1)	108.77(5)	103.00(9)
P3-S4-P4	105.66(9)	104.19(5)	-	105.1(1)	-	-
P1-O1-C1	125.1(4)	123.0(2)	120.1(3)	124.1(5)	121.0(2)	120.9(3)
P2-O2-C2/N*	122.5(4)	123.1(2)	121.9(3)	120.3(4)	122.1(2)	125.6(3)
P3-O5-C50	121.8(4)	123.2(2)	-	125.2(5)	-	-
P4-O6- C51/M*	124.6(4)	125.0(2)		118.1(4)		
(*) N and M den	ote the terminal C	C atom number in t	the macrocyclic rin	g		
Torsion angles,	0					
S2=P1-S1-P2	154.9(1)	65.47(7)	-166.95(8)	-57.1(1)	-174.57(5)	164.85(9)
P1-S1-P2=S3	-170.5(1)	137.14(6)	170.53(8)	-163.3(1)	172.32(5)	58.2(1)
S5=P3-S4-P4	170.6(1)	-69.34(7)	-	57.2(1)	-	-
P3-S4-P4=S6	-155.2(1)	-131.90(6)		163.5(1)		
C11C10P1=S	94.8(6)	31.4(3)	-73.6(4)	-19.5(7)	-41.9(3)	-121.1(4)
2	-38.6(6)	153.6(3)	36.3(4)	-45.0(7)	74.1(3)	17.8(5)
C21C20P2=S 3						
C31C30P3=S	42.4(6)	-40.2(3)	-	26.3(7)	-	-
5	-94.2(6)	-155.8(3)		59.0(7)		

C41C40P4=S 6						
S2P1P2S3	-23.6(2)	174.21(7)	6.0(2)	155.4(2)	-3.6(1)	-155.7(1)
S5P3P4S6	23.0(2)	-172.00(7)	-	-156.5(2)	-	-
S2P1O3CH ₃ S3P2O4CH ₃	100.8(4) 147.8(5)	-142.4(3) -22.7(3)	-77.4(4)	162.4(5)	139.5(2)	62.1(4)
			29.7(4)	-41.7(6)	78.0(2)	21.0(5)
S5P3O7CH ₃ S6P4O8CH ₃	-143.1(5)	130.4(3)	-	-162.6(5)	-	-
	-99.8(5)	-155.7(2)		-102.7(6)		

 Table S6. Hydrogen-bond geometry (Å,°) for investigated cyclic disulfanes 2.

<i>D</i> —H…A	<i>D</i> —Н	H···A	$D \cdots A$	<i>D</i> —H…A			
Comp 2b							
C12—H12…O4 ⁱ	0.95	2.49	3.4346 (18)	171			
C26—H26C····S4 ⁱⁱ	0.98	2.79	3.7602 (16)	169			
Symmetry codes: (i) <i>x</i> , -	-y+5/2, $z-1/2$; (ii) $x, -y+3$	3/2, <i>z</i> +1/2					
Comp 2b '	Comp 2b'						
C2—H2…S4 ⁱ	1.00	2.93	3.783 (4)	144			
C6—H6 <i>C</i> ···O3 ⁱ	0.98	2.66	3.450 (6)	138			
C6—H6A…S2 ⁱⁱ	0.98	3.02	3.671 (5)	125			
C15—H15…S3 ⁱⁱⁱ	0.95	2.94	3.773 (4)	148			
Symmetry codes: (i) x-1, y, z; (ii) x-1, y+1, z; (iii) $-x+1, -y+1, -z$							

Comp <i>syn-</i> 2d mono					
C16—H16 <i>B</i> ····S2 ⁱ	0.98	3.03	3.9768 (16)	163	
C16—H16C····O2 ⁱⁱ	0.98	2.53	3.3626 (18)	143	
Symmetry codes: (i) -x-	+1, -y, -z+1; (ii) -x+2,	y, -z+1			
Comp <i>anti-</i> 2d tri					
C15—H15…S4 ⁱ	0.95	2.97	3.684 (3)	133	
C16—H16 <i>A</i> ····S4 ⁱⁱ	0.98	2.86	3.652 (3)	138	
C16—H16 <i>C</i> ····S3 ⁱⁱⁱ	0.98	3.00	3.827 (3)	143	
C21—H21 \cdots S2 ^{iv}	0.95	2.95	3.617 (3)	129	
C25—H25…S3 ^v	0.95	2.97	3.672 (3)	131	
Symmetry codes: (i) -x+1, -y, -z+1; (ii) x, y-1, z; (iii) -x+2, -y-1, -z+1; (iv) -x+2, -y, -z+1; (v) -x+2, -y, -z.					

Table S7. Hydrogen-bond geometry (Å, °) for investigated sulfides 3

<i>D</i> —H··· <i>A</i>	<i>D</i> —Н	Н…А	$D \cdots A$	D—H···A		
Comp cis -3a	Comp cis-3a					
C11—H11…S1	0.95	2.87	3.333 (6)	111		
C15—H15…S3 ⁱ	0.95	3.00	3.871 (7)	153		

C16—H16A…S3 ⁱⁱ	0.98	2.84	3.751 (7)	154
C16—H16B…S6 ⁱⁱⁱ	0.98	3.02	3.675 (8)	126
C16—H16C····S4 ^{iv}	0.98	2.90	3.533 (8)	123
C36—H36A…S2 ⁱⁱ	0.98	3.01	3.754 (9)	133
C41—H41…S4	0.95	2.95	3.405 (6)	111
C42—H42 \cdots S2 ^v	0.95	3.02	3.931 (7)	161
C46—H46B…S1 ^{vi}	0.98	3.00	3.601 (8)	121
C52—H52B····O2 ⁱ Symmetry codes: (i) x, z; (vi) $x+1/2$, $-y+3/2$, z.	0.99 y, z-1; (ii) -x+3/2, y+1/2 -1.	2.52 , z-1/2; (iii) x-1/2, -y+3/	3.464 (8) /2, z+1; (iv) x-1/2, -y+3/	159 /2, z; (v) x+1/2, -y+3/
C52—H52B····O2 ⁱ Symmetry codes: (i) x, z; (vi) $x+1/2$, $-y+3/2$, z· <i>Comp trans</i> - 3a	0.99 y, z-1; (ii) -x+3/2, y+1/2 -1.	2.52 , z-1/2; (iii) x-1/2, -y+3,	3.464 (8) /2, z+1; (iv) x-1/2, -y+3/	159 /2, z; (v) x+1/2, -y+3/2
C52—H52B····O2 ⁱ Symmetry codes: (i) x, z; (vi) $x+1/2$, $-y+3/2$, z <i>Comp trans</i> - 3a C2—H2A····S6 ⁱ	0.99 y, z-1; (ii) -x+3/2, y+1/2 -1. 0.99	2.52 , z-1/2; (iii) x-1/2, -y+3, 2.88	3.464 (8) /2, z+1; (iv) x-1/2, -y+3/ 3.622 (3)	159 /2, z; (v) x+1/2, -y+3/2 132
C52—H52B····O2 ⁱ Symmetry codes: (i) x, z; (vi) $x+1/2$, $-y+3/2$, z- <i>Comp trans</i> - 3a C2—H2A····S6 ⁱ C16—H16A····S2 ⁱⁱ	0.99 y, z-1; (ii) -x+3/2, y+1/2 -1. 0.99 0.99	2.52 , z-1/2; (iii) x-1/2, -y+3, 2.88 2.91	3.464 (8) /2, z+1; (iv) x-1/2, -y+3/ 3.622 (3) 3.534 (5)	159 /2, z; (v) x+1/2, -y+3/2 132 123
C52—H52B····O2 ⁱ Symmetry codes: (i) x, z; (vi) $x+1/2$, $-y+3/2$, z <i>Comp trans</i> - 3a C2—H2A····S6 ⁱ C16—H16A····S2 ⁱⁱ C21—H21···S2	0.99 y, z-1; (ii) -x+3/2, y+1/2 -1. 0.99 0.98 0.95	2.52 , z-1/2; (iii) x-1/2, -y+3, 2.88 2.91 2.80	3.464 (8) /2, z+1; (iv) x-1/2, -y+3/ 3.622 (3) 3.534 (5) 3.614 (4)	159 /2, z; (v) x+1/2, -y+3/2 132 123 144
C52—H52B····O2 ⁱ Symmetry codes: (i) x, z; (vi) $x+1/2$, $-y+3/2$, z- <i>Comp trans-</i> 3a C2—H2A····S6 ⁱ C16—H16A····S2 ⁱⁱ C21—H21···S2 C22—H22···O7 ⁱⁱⁱ	0.99 y, z-1; (ii) -x+3/2, y+1/2 -1. 0.99 0.98 0.95 0.95	2.52 , z-1/2; (iii) x-1/2, -y+3, 2.88 2.91 2.80 2.55	3.464 (8) /2, z+1; (iv) x-1/2, -y+3/ 3.622 (3) 3.534 (5) 3.614 (4) 3.457 (4)	159 /2, z; (v) x+1/2, -y+3/2 132 123 144 160
C52—H52B····O2 ⁱ Symmetry codes: (i) x, z; (vi) $x+1/2$, $-y+3/2$, z: <i>Comp trans-3a</i> C2—H2A····S6 ⁱ C16—H16A····S2 ⁱⁱ C21—H21···S2 C22—H22···O7 ⁱⁱⁱ C32—H32···S2 ⁱⁱ	0.99 y, z-1; (ii) -x+3/2, y+1/2 -1. 0.99 0.99 0.98 0.95 0.95 0.95	2.52 , z-1/2; (iii) x-1/2, -y+3, 2.88 2.91 2.80 2.55 2.91	3.464 (8) (2, z+1; (iv) x-1/2, -y+3) 3.622 (3) 3.534 (5) 3.614 (4) 3.457 (4) 3.721 (4)	159 /2, z; (v) x+1/2, -y+3/2 132 123 144 160 144
C52—H52B····O2 ⁱ Symmetry codes: (i) x, z; (vi) $x+1/2$, $-y+3/2$, z <i>Comp trans</i> - 3a C2—H2A····S6 ⁱ C16—H16A····S2 ⁱⁱ C21—H21···S2 C22—H22···O7 ⁱⁱⁱ C32—H32···S2 ⁱⁱ	0.99 y, z-1; (ii) -x+3/2, y+1/2 -1. 0.99 0.99 0.98 0.95 0.95 0.95 0.95 0.95 0.95	2.52 , z-1/2; (iii) x-1/2, -y+3/ 2.88 2.91 2.80 2.55 2.91 2.91 2.94	3.464 (8) (2, z+1; (iv) x-1/2, -y+3/ 3.622 (3) 3.534 (5) 3.614 (4) 3.457 (4) 3.721 (4) 3.590 (4)	159 /2, z; (v) x+1/2, -y+3/2 132 123 144 160 144 125

C45—H45…O8 ^v	0.95	2.65	3.584 (4)	167			
Symmetry codes: (i) -x, -y+2, -z; (ii) -x, y+1/2, -z+1/2; (iii) -x, y-1/2, -z+1/2; (iv) -x-1, y-1/2, -z+1/2; (v) -x, -y+3, -z.							
Comp cis- 3 b							
$C2$ — $H2$ ··· $S1^{i}$	0.93	2.75	3.460 (5)	134			
C5—H5…S2 ⁱⁱ	0.93	2.89	3.790 (5)	162			
C7—H7 <i>A</i> …S2 ⁱⁱⁱ	0.96	2.88	3.828 (7)	171			
C14—H14 <i>A</i> ····S3 ⁱⁱⁱ	0.96	3.01	3.881 (7)	151			
Symmetry codes: (i) x+	1/2, -y+1/2, z+1/2; (ii) -	-x+2, -y, -z; (iii) x+1, y,	, Z.	L			
Comp trans- 3 b							
C16—H16 <i>C</i> ····S6 ⁱ	0.96	2.86	3.487 (9)	124			
C26—H26C····S2 ⁱⁱ	0.96	2.74	3.674 (10)	166			
C41—H41…O7 ⁱⁱⁱ	0.93	2.54	3.389 (9)	153			
C46—H46 <i>A</i> ····O3 ^{iv}	0.96	2.65	3.554 (11)	157			
Symmetry codes: (i) x, $-y+2$, $z+1/2$; (ii) x, $-y+1$, $z-1/2$; (iii) x, $-y+3$, $z-1/2$; (iv) $x+1$, $-y+2$, $z-1/2$.							
Comp cis-3c							
C1—H1A····S2	0.99	2.84	3.408 (4)	117			
C2—H2A…S1	0.99	2.95	3.660 (4)	130			
C12—H12…S1 ⁱ	0.95	3.02	3.759 (3)	136			

C14—H14…S3 ⁱⁱ	0.95	2.96	3.907 (3)	171		
C16—H16A…S2 ⁱⁱⁱ	0.98	2.91	3.742 (3)	143		
C16—H16C…S1 ⁱⁱ	0.98	2.99	3.951 (4)	168		
C24—H24…S3 ^{iv}	0.95	2.99	3.875 (3)	156		
Symmetry codes: (i) -x+2, -y+1, -z; (ii) x+1, y, z; (iii) x+1, y-1, z; (iv) -x+2, -y, -z+1.						
Comp trans-3c						
Comp trans-3c						
<i>Comp trans-3c</i> C21—H21…S3	0.93	2.99	3.448 (6)	112		
Comp trans-3c C21—H21…S3 C21—H21…S3 ⁱ	0.93	2.99 3.09	3.448 (6) 3.952 (6)	112 156		
<i>Comp trans-</i> 3 с C21—H21…S3 C21—H21…S3 ⁱ C26—H26B…O3 ⁱ	0.93 0.93 0.96	2.99 3.09 2.56	3.448 (6) 3.952 (6) 3.462 (8)	112 156 156		

Table S8. Transannular hydrogens and transannular H-H repulsive and H-S attractive interactionstaken from X-Ray structures and from calculated structures (in brackets) of **2** and **3**

Compd	transannular hydrogens	repulsive interaction	distance	transannular CHS interaction / hydrogen bond*	distance
trans-2a (trans-2a)	-	-	-	-	-
(cis-2a)	-	-	-	-	-
trans-2b	С1Н, С3Н	-	-	C1HS1 C3HS2	3.109 3.109
(trans-2b)	С1Н, С3Н	-	-	C1HS1 C3HS2	3.032 3.057
(<i>cis</i> -2b)	С1Н, С3Н	-	-	C1HS1 C3HS2	3.108 3.070
trans-2b'	С1Н, С3Н	-	-	C1HS1 C3HS2	3.038 3.046
trans-2c	С1Н, С3Н	-	-	C1HS1 C3HS2	3.171 3.222
(trans-2c)	С1Н, С3Н	-	-	C1HS1 C3HS2	3.101 3.321
(<i>cis</i> -2c)	С1Н, С3Н	-	-	C1HS1 C3HS2	3.170 3.222
trans-2d	С1Н, С4Н, С3Н, С6Н	C1HHC4 C3HHC6	2.221 2.181	C1HS1 C6HS2	3.292 3.296
(trans-2d)	С1Н, С4Н, С3Н, С6Н	C1HHC4 C3HHC6	2.184 2.182	C1HS1 C6HS2	3.374 3.460
(<i>cis</i> -2d)	С1Н, С4Н, С3Н, С6Н	C1HHC4 C3HHC6	2.182 2.159	C1HS1 C6HS2	3.364 3.357
cis-3a	C1H	-	-	C1HS	2.767-2.786
(cis-3a)	C1H		-	C1HS	2.739
trans-3a	С1Н, С3Н	-	-	C1HS	3.387
(trans-3a)	С1Н, С3Н	-	-	C1HS	3.679
cis- 3b	С1Н, С3Н	-	-	C1HS C3HS	3.082 3.044
(<i>cis</i> - 3b)	С1Н, С3Н	-	-	C1HS C3HS	3.120 3.069
trans-3b	C1H	-	-	С1НS	2.838
(trans- 3b)	С1Н	-	-	C1HS	2.873

cis- 3c	С2Н, С3Н	-	-	C3HS	2.946
(<i>cis</i> -3c)	С2Н, С3Н	-	-	C3HS	2.951
trans-3c	C1H, C4H	-	-	C1HS	3.190
(trans-3c)	С1Н, С4Н	-	-	C1HS	3.195

(*) Interactions in which the CH...S distance is smaller than the sum of the van der Waals radii (<2.9 A) are defined as hydrogen bonds and listed in bold

Calculations

The molecular structure of disulfanes **2** and sulfanes **3** was optimized with the density functional theory at MN12SX/6-311G* level using Gaussian 09². Solvent effects of dichloroethane were included using PCM continuum model. The optimized geometries were used to calculate the NMR parameters.

Dipole moments (debye) computed for molecules 3

² M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.

Figure S49. Dipole moment and its orientation for cis-3a

Figure S50. Dipole moment and its orientation for trans-3a

Figure S51. Dipole moment and its orientation for cis-3b

Figure S52. Dipole moment and its orientation for trans-3b

Figure S53. Dipole moment and its orientation for *cis*-3c

Figure S54. Dipole moment and its orientation for *trans*-3c