Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

Electronic Supplementary Information for

Heteroleptic Cationic Iridium(III) Complexes Bearing Phenanthroline Derivatives with Extended π -Conjugation as Potential Broadband Reverse Saturable Absorbers

Li Wang,^a Peng Cui,^{a,b} Levi Lystrom,^a Jiapeng Lu,^a Svetlana Kilina^a and Wenfang Sun^{a,*}

^a Department of Chemistry and Biochemistry, ^b Materials and Nanotechnology Program, North Dakota State University, Fargo, North Dakota 58108-6050, United States

Fig. S1 ¹H NMR spectrum of complex 2 in CDCl₃.

Fig. S2 ¹H NMR spectrum of complex Ir(piq)₂(dppn-2Br) in CDCl₃.

Fig. S3 ¹H NMR spectrum of complex 3 in CDCl₃.

Fig. S4 HRMS spectra of complex 2. Top: theoretical spectrum calculated for $C_{106}H_{110}IrN_6$ (M-PF₆); Bottom: experimental spectrum.

Fig. S5 HRMS spectra of complex **3**. Top: theoretical spectrum calculated for $C_{110}H_{112}IrN_6$ (M-PF₆); Bottom: experimental spectrum.

Fig. S6 Comparison of the UV-vis absorption spectra of complexes 2 and 3 to those of their corresponding complexes without the fluorenyl substituents $Ir(piq)_2dppz$ and $Ir(piq)_2dppn$ in acetonitrile solutions.

Fig. S7 Normalized UV-vis absorption spectra of complexes 1-3 in different solvents.

Fig. S8 Comparison of the experimental and calculated UV-vis absorption spectra of complexes **1-3** in toluene.

Sn	Holes	Electrons
1 S_2 401 nm f = 0.1		
S_3 389 nm $f = 1.3$		
S_4 388 nm $f = 0.0$		
S_{11} 329 nm f = 0.2		
S_{28} 290 nm f = 0.0	n 5 65%	65%
	19%	19%
2 S_2 406 nm f = 1.2		
S_3 389 nm $f = 0.2$		
S_7 368 nm f = 0.3		
S_{15} 327 nm f = 0.2	n 5 67%	67%
	17%	17%

Table S1Natural transition orbitals (NTOs) representing main absorption bands for
complexes 1-3 in toluene.

Fig. S9 Normalized emission spectra of complexes 1-3 in different solvents at room temperature. $\lambda_{ex} = 436$ nm.

		$\lambda_{ m em}/ m nm$ ($ au_{ m em}/\mu s$); $\Phi_{ m em}$		
	CH ₃ CN	CH_2Cl_2	Toluene	
1	586 (3.30); 0.35	583 (3.80); 0.40	590 (3.10); 0.46	
2	590 (1.05); 0.13	590 (4.42); 0.57	590 (2.93); 0.40	
3	587 (2.37); 0.035	588 (2.84); 0.077	590 (2.00); 0.003	

Table S2 Emission band maxima (λ_{em}), lifetimes (τ_{em}) and quantum yields (Φ_{em}) for complexes **1-3** in different solvents at room temperature.

	T_n	Hole	Electron
1	T1 910 nm		
2	T1 905 nm		
3	T ₁ 935 nm		
	T2 909 nm	HALL HALL	

Table S3 Natural transition orbitals (NTOs) of the low(est)-energy triplet transitions of 1-3in acetonitrile.

Fig. S10 Time-resolved ns transient absorption spectra of complexes 1-3 in deoxygenated toluene. $\lambda_{ex} = 355 \text{ nm}, A_{355 \text{ nm}} = 0.4 \text{ in a 1-cm cuvette.}$

Fig. S11 Time-resolved ns transient absorption spectra of complexes 1-3 and complexes $Ir(piq)_2dppn$ in deoxygenated acetonitrile. $\lambda_{ex} = 355$ nm, $A_{355 nm} = 0.4$ in a 1-cm cuvette.

Fig. S12 Time-resolved ns transient absorption spectra of $[Ir(piq)_2Cl]_2$ in deoxygenated acetonitrile. $\lambda_{ex} = 355$ nm, $A_{355 nm} = 0.4$ in a 1-cm cuvette.

Fig. S13 Comparison of ns transient absorption spectra at zero-time delay for complexes 2 and 3 with $Ir(piq)_2dppz$ and $Ir(piq)_2dppn$, respectively, in deoxygenated acetonitrile. $\lambda_{ex} = 355 \text{ nm}$, $A_{355 \text{ nm}} = 0.4$ in a 1-cm cuvette.

Fig. S14 Comparison of RSA performance of complex 2 with $Ir(piq)_2dppz$ and complex 3 with $Ir(piq)_2dppn$ in acetonitrile for 4.1-ns laser pulses at 532 nm in a 2-mm cuvette. The linear transmission was adjusted to 80% at 532 nm for each sample in a 2-mm cuvette.