Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

Supporting Information

Novel Co-doped Fe₃O₄/Bi₂WO₆ core-shell Magnetic Photocatalysts with enhanced photocatalytic degradation of contaminants

Haidong Luo,^a Binxia Zhao,^{*a} Mengran Zhang,^b Yuling Liu,^a Ruixuan Han,^a Linxue Liu^a

^aSchool of Chemical Engineering, Northwest University, Xi'an 710069, Shaanxi, China ^bSchool of Urban Planning and Municipal Engineering, Xi'an Polytechnic University, Xi'an, Shaanxi, China

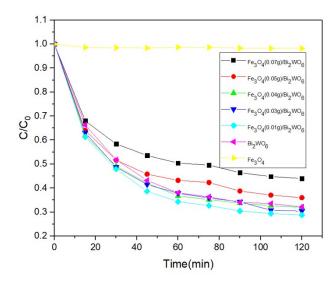


Figure S1 photocatalytic activity evaluation of Fe₃O₄(x)/Bi₂WO₆

Comparison of magnetic strength

A certain amount of $Fe_3O_4(x)/Bi_2WO_6$ was placed on a magnetic stirrer, we observed the movement of the sample. The movement of $Fe_3O_4(0.01 \text{ g})/Bi_2WO_6$ is not good, only a part of the particles can be rotated, and about half of the powder does not exhibit magnetism. The movement of $Fe_3O_4(0.07 \text{ g})/Bi_2WO_6$ is best. Other samples (0.03 g,0.04 g,0.05 g) have similar movements. When we use the key to stir the sample, the sample particles can quickly restore the original state of motion. This test indicates that the magnetic properties of the composite sample increase as the amount of Fe_3O_4 increases.

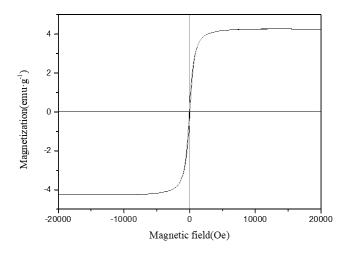


Figure S2 Magnetization curves of Fe₃O₄(0.04 g)/Bi₂WO₆.

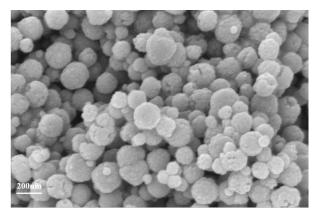


Figure S3 SEM images of Fe_3O_4 .

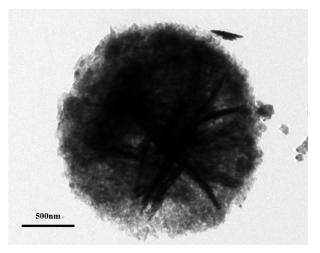


Figure S4 TEM images of $1\%Co^{2+}$ -Fe₃O₄(0.04 g)/Bi₂WO₆.