Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

New Journal of Chemistry

Supplementary information

How does the Zn-precursor nature impact on carrier transfer into ZnO/Zn-TiO₂ nanostructures? organic vs. inorganic anions

Joelma R. de Melo,*^a Andrés F. Gualdrón-Reyes,*^{b,c} Nádia R. Camargo Fernandes,^a Marcelino L. Gimenes,^a María I. Carreño-Lizcano,^{b,c} Ingrid N. Sequeda-Pico,^{b,c} Jhonatan Rodríguez-Pereira,^{b,d} Victor Baldovino-Medrano,^{b,d} and Martha E. Niño Gómez*^{b,c}

^aUniversidade Estadual de Maringá, Departamento de Engenharia Química. Avenida Colombo 5790, Maringá 87020-260, Paraná, Brazil.

^bCentro de Investigaciones en Catálisis (CICAT), Universidad Industrial de Santander, Sede UIS Guatiguará, Piedecuesta, Santander, Colombia. C.P. 681011.

^cCentro de Investigación Científica y Tecnológica en Materiales y Nanociencias (CMN), Universidad Industrial de Santander, Piedecuesta, Santander, Colombia. C.P. 681011.

^{*d}Laboratorio en Ciencia de superficies (Surf-Lab), Universidad Industrial de Santander, km 2 vía El Refugio, C.P.* 681011, Piedecuesta, Santander, Colombia.</sup>

*Corresponding Author: Email address: <u>marthan@uis.edu.co</u> (M.E. Niño-Gómez), <u>andresgualdron105@gmail.com</u> (A. F. Gualdrón-Reyes) <u>rmjoelma@gmail.com</u> (J. Ribeiro de Melo) 1. Identification of main vibration modes in layer basic zinc salts

Figure S1. FT-IR spectra of ZnO-N and ZnO-A nanorods based powders.

2. morphology of a TiO_2 thin film

Figure S2. FESEM images of TiO_2 film surface at (a) low and (b) high magnifications.

3. Photochemical properties of TiO₂, N-ZT and A-ZT composite films

Figure S3. Open-circuit photopotential curves for TiO₂ film, N-ZT and A-ZT heterostructure based films.

4. Stabilized photocurrent of ZnO nanorods

Figure S4. Chopped light transient photocurrent measurements for TiO_2 film, N-ZT and A-ZT heterostructure based films at 0.5 V *vs.* Ag/AgCl. Electrolyte solution: 0.1 M HClO₄ (pH 1); illumination source: halide lamp (60 mW cm⁻²).

5. XPS quantification of ZnO nanorods powders, N-ZT and A-ZT composite films

	Chemical environment (at. %)						
Sample	Oxygen species	Carbon species	Zn-O	Zn⁺			
ZnO-N	34.75	16.55	33.02	15.68			
ZnO-A	33.41	26.75	26.37	13.47			

Table S1. Percentage of species identified during XPS analysis of ZnO nanorods-based powders.

 Table S2. Percentage of species identified during XPS analysis of composite films.

Sample	Chemical environment (at. %)						
	Oxygen species	Carbon species	Zn-O	Zn-O-Ti	Ti ³⁺	Ti ⁴⁺	
N-ZT	40.87	43.85	0.40	0.91	1.11	12.86	
A-ZT	28.15	63.01	0.85	0.79	0.25	6.95	