Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

New Journal of Chemistry

Supporting Information

Catalytic NO Reduction by CO over Ceria-Cobalt Oxide

Catalysts

Xiaoran Niu^a, Zuotao Lei^{*a,b} and Chunhui Yang^{* a,b}

^[a] MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China. ^[b] Key Laboratory of Micro-systems and Micro-structures Manufacturing of Ministry of Education, Harbin Institute of Technology, Harbin 150001, China. E-mail: <u>yangchh@hit.edu.cn</u>; <u>leizuotao@hit.edu.cn</u>

Fig. S1 XRD patterns of $Co_{100-x}Ce_x$ (x= 80, 90, 100) catalysts (a), the magnified XRD peak from $2\theta=25$ to 31° for $Co_{100-x}Ce_x$ (x= 80, 90, 100) catalysts (b).

Fig.S2 SEM images of Co₈₅Ce₁₅ catalyst after calcination.

Fig. S3 Effect of the vol.% of reactant (NO and CO) in the feed on the reaction rate of NO and CO over $Co_{98}Ce_2$ catalyst.

Catalysts	Textural properties		Surface atomic ratio		
	BET surface area (m ² /g)	Ce/(Ce+Co) /%	Co ²⁺ /Co ³⁺	Ce ³⁺ /Ce ²⁺	
Co20Ce80	19.5	85.3	0.92	0.40	
Co10Ce90	17.8	90.0	0.93	0.40	
Commercial Co ₃ O ₄	3.4	-	-	-	

Table. S1 Surface compositions and relative parameters of $Co_{100-x}Ce_x$ samples

^a ICP results;

^b XPS results;

	Atom	NO + CO reaction ^b				
sample	content ^a					
	Ce/(Ce+Co)	NO Conv. (C _{max} , %)		CO Conv. (C _{max} , %)		
	%	<300 °C	>580°C	<300 °C	>580°C	
Co ₁₀₀ Ce ₀	0	74.9	-	82.2	-	
Co ₉₈ Ce ₂	1.85	99.7	99.8	98.6	99.4	
Co ₈₅ Ce ₁₅	13.93	85.6	-	76.7	-	

Table. S2 Ceria content and the catalytic activity data of $Co_{100-x}Ce_x$ samples

^a Determined by the ICP analysis.

 $^{\rm b}$ the max conversion of reactant (C_{max}) measured from the flow reactor of NO+CO reaction.