Electronic Supplementary Information

Enhanced Porosity of Ni@HSZ for Dry Reforming of Methane

Zi-Yian Lim^{a,b}, Xiaoqian Ma^b, Baiman Chen^{a*}

 ^a Guangdong Provincial Key Laboratory of Distributed Energy Systems, School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan 523808, China.
^b School of Electric Power, South China University of Technology, Guangzhou 510640, China.

Corresponding author: chenbm@dgut.edu.cn

Catalyst synthesis

Synthesis of Ni@SiO₂@ZrO₂. 3 mL of aqueous 0.25M NiCl₂ and 11.5 mL of Brij L4 (Sigma-Aldrich) mixed with 40 mL of n-octane in a 250 mL 3-neck round bottom flask at 30 °C under N₂ atmosphere protection. The mixture was stirred for 10 minutes before 1 mL of 3.172 M ice-cold NaBH₄ solution quickly dropped into the flask. Immediately, the clear solution would turn pitch black, and bubbles generated. After 5 minutes of N₂ purge, the flask sealed. Next, the solution was stirred for 8 hours to form stable Ni colloids. The SiO₂ coating was achieved by subsequently adding 50 mL of n-octane, 2.4 mL Brij L4, 1.2 mL ammonia (26-28%), and 6 mL of TEOS into the solution. The solution was stirred for another 5 hours. After 3 hours, an additional 2 mL of TEOS was added and stirred for another 5 hours. The Ni@SiO₂ colloids were obtained after centrifugation and washed with acetone and ethanol twice, and then re-dispersed into 200mL ethanol. Subsequently, 0.6 mL of Brij L4 and 0.6 mL of H₂O were added and stirred for 30 minutes. Then, 3 mL of Zr(OBu)4 was added and vigorously stirred for 15 hours at 30 °C. The colloids were collected and re-dispersed into 40 mL deionized water with 0.001M NaBH₄ and aged for 8 hours. The sample was collected and dried for 105 °C for 3 hours and calcined at 750 °C for 3 hours.

Synthesis of Ni@HSZ. 0.5 g of a calcined powder dispersed into 10 mL of 0.4 M tetrabutylammonium hydroxide (TBAOH) solution and hydrothermal treat at 180 °C for 72 hours. The colloids were collected and dried at 105 °C for 3 hours. Then, the powder was calcined at 550 °C. Lastly, the obtained powder was reduced under $50H_2/N_2$ at 750 °C for 3 hours.

Catalyst characterization

X-ray diffraction (XRD) spectra collected on a D8 Rigaku 9000 powder diffractometer, equipped with Cu K α radiation ($\lambda = 1.5406$ Å) in the 2 θ range of 10°-90° at operation voltage of 45 kV and current of 200 mA. The specific surface area was determined by the BET method with N₂ adsorption-desorption at 77 K using a Micromeritics Tristar II 3Flex. Prior to the measurements, the samples were degassed at 300 °C for 8 hours under vacuum. The structure and morphologies of the catalysts observed by an FEI Tecnai G2 F20 transmission electron microscope (TEM) operated at 200 kV. ICP-MS (Inductively Coupled Plasma Mass Spectrometry) was performed on an Agilent 720 system to obtain each sample's Ni wt% content. After each test, the acid-digested sample was diluted with deionized water to 100 mL before the analyzer. H₂ temperature-programmed reduction (H₂-TPR) was carried out on a Micromeritics AutoChem II 2920 apparatus. 0.1 g of the sample was filled in the cell and heated in pure Ar gas at 300 °C for 30 min to remove surface adsorbed impurities. After cooling to 50 °C, a 10% H₂/Ar mixture fed with a flow rate of 50 mL min⁻¹. The catalyst was heated from 50 °C to 900 °C at a heating rate of 10 °C min⁻¹. H₂ temperature-programmed desorption (H₂-TPD) tests were carried out at the same chemisorption analyzer (AutoChem II 2920). 100 mg of catalyst was loaded into the quartz tube and reduced under a flow of 10% H₂/Ar at 650 °C for 1 h. Then, the sample was cooled down to 50 °C and purged with pure Ar flow for 2 h to remove weakly adsorbed impurities. Finally, the temperature was increased from 50 °C to 650 °C at 10°C min⁻¹. The desorbs of H₂ were calculated by integrating the area of the H₂-TPD profiles and using CuO TPR to calibrate the quantities. The surface relative mass of the

catalysts analyzed by X-ray photoelectron spectroscopy (K-Alpha⁺, Thermo Fisher Scientific) using 30 eV pass energy in CAE mode and Al K_a radiation source (1486.6 eV) at room temperature and under a vacuum of 10⁻⁷ Pa (10⁻⁹ Torr). To quantify the amount of carbon deposition over a tested catalyst, thermogravimetric analysis (TGA) of tested catalyst subjected to temperature changes with 10 °C min⁻¹ heating rate to 1000 °C under air atmosphere and recorded using STA 449F3 (NETZSCH) equipment. Raman spectra of the tested catalysts were collected using a WITec Alpha 300R spectrometer (λ = 532 nm) equipped with a CCD detector. Each spectrum acquisition consisted of 3 accumulations for 45 seconds and recorded at ambient temperature.

Catalyst Evaluations

Catalytic dry reforming of methane studied in a fixed bed quartz reactor (15 mm ID) under atmospheric pressure. Typically, 100 mg of catalyst diluted with filled zirconia ceramic sand of 2 cm length used. The quartz reactor loaded with catalyst was heated in an electric furnace, and the temperature of the bed controlled by a K-type thermocouple positioned at the center of the catalyst bed. Before the test, the catalyst was reduced in situ 750 °C with 50%H₂/N₂ mixture (40 mL min⁻¹) for 3 hours. A reaction mixture of N₂, CH₄, and CO₂ (ratio of 1:1:1) was fed using a gas hourly space velocity (GHSV) of 54 000 mL g_{cat}⁻¹ h⁻¹ and temperature raised to 800 °C. The composition of the effluent gases was analyzed by on-line gas chromatography (Fuli 9790) equipped with a packed column (TDX-01) and a TCD detector. A cold trap was placed before the GC to remove moisture in the gas products.

Figure S1. N₂-isotherm of Ni@SiO₂@ZrO₂ and Ni@HSZ catalysts.

Figure S2. Pore size distribution of Ni@SiO₂@ZrO₂ and Ni@HSZ catalysts.

Figure S3. TEM images of tested Ni@SiO₂@ZrO₂ (a), Ni@HSZ (b) catalysts and their respective Ni particle size distribution.

Figure S4. HRTEM and HAADF-STEM image of reduced Ni@SiO₂@ZrO₂ catalyst.

Figure S5. HRTEM and HAADF-STEM image of reduced Ni@HSZ catalyst.

Figure S6. Recyclability test of Ni@HSZ catalyst on dry reforming of methane. The catalyst was tested for 6 hours, oxidizes in the air at 600 °C for 1 hour, reduced at the same temperature for 1 hour, and repeated these cycles for 4 times.

Figure S7. Catalytic performance of conventional impregnated 5% Ni/ZrO2 catalyst for dry reforming of methane. Conditions: 800 °C, GHSV = 54 000 mLg_{cat}⁻¹h⁻¹, and N₂:CH₄:CO₂ = 1:1:1.

Table S1. Catalytic performance of core/yolk-shell catalysts for dry reforming of methane at 800 °C.							
Catalyst	Ni	Reaction conditions	Methane	Carbon	Ref		
	wt%		conversion (%)	Deposition			
Ni@SiO ₂ @ZrO ₂	1.85	GHSV=54 Lg _{cat} ⁻¹ h ⁻¹	67	Negligible after	This work		
		N ₂ :CH ₄ :CO ₂ =1:1:1		50 h TOS			
Ni@HSZ	2.31	GHSV=54 Lg _{cat} ⁻¹ h ⁻¹	83	\leq 1 % after 50	This work		
		N ₂ :CH ₄ :CO ₂ =1:1:1		h TOS			
Ni@SiO ₂	4.93	GHSV=18 Lg _{cat} ⁻¹ h ⁻¹	90	Negligible after	[1]		
		CH ₄ :CO ₂ =1:1		100 h TOS			
Ni-yolk@Ni@SiO2	18.60	GHSV=36 Lg _{cat} ⁻¹ h ⁻¹	90	Negligible after	[2]		
		N ₂ :CH ₄ :CO ₂ =1:1:1		20 h TOS			
LaNiO ₃ -	8.10	GHSV=18 Lg _{cat} -1h-1	89	4% after 10h	[3]		
cube@meso-SiO ₂		CH ₄ :CO ₂ =1:1		TOS			

Table S2. Analysis of XPS Ni 2p3/2 surface Ni species fraction of Ni@SiO ₂ @ZrO ₂ and Ni@HSZ catalysts.							
Catalyst	Ni-Zr-O (eV)	NiSiO ₃ (eV)	Ni-Zr-O fraction (%)	NiSiO ₃ fraction (%)			
Ni@SiO ₂ @ZrO ₂	855.6	856.9	51.7	48.3			
Ni@HSZ	855.9	856.9	29.8	70.2			

Table S3. CH_4 conversion, amount of surface Ni, and TOF_{CH4} of the catalysts.						
Catalyst	CH ₄ conversion (%)	Amount of surface Ni ^a	TOF_{CH4} (s ⁻¹)			
		$(10^{-6} \text{ mol } g_{cat}^{-1})$				
Ni@SiO ₂ @ZrO ₂	67	4.08	3.66			
Ni@HSZ	83	3.03	6.13			
^{<i>a</i>} Determined from H_2 -TPD with adsorption stoichiometry of $H/Ni = 1:1[4]$.						

References

[1] H. Peng, X. Zhang, L. Zhang, C. Rao, J. Lian, W. Liu, J. Ying, G. Zhang, Z. Wang, N. Zhang, X. Wang, ChemCatChem, 9 (2017) 127-136.

[2] Z. Li, L. Mo, Y. Kathiraser, S. Kawi, ACS Catalysis, 4 (2014) 1526-1536.

[3] L. Zhang, J. Lian, L. Li, C. Peng, W. Liu, X. Xu, X. Fang, Z. Wang, X. Wang, H. Peng, Microporous and Mesoporous Materials, 266 (2018) 189-197.

[4] L. Li, S. He, Y. Song, J. Zhao, W. Ji, C.-T. Au, Journal of catalysis, 288 (2012) 54-64.