Electronic Supplementary Information

Enhanced photocatalytic activity of anatase by rational modification

of {001} facets with Fe(III) ions

Na Guo,^{‡ a,b} Lei Sun,^{‡ a} Haiyan Li,^a Ying Zeng,^{a,b} Hongwen Yu,*^a

a Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 4888 Shengbei Rd,

Changchun 130102, China

b University of Chinese Academy of Sciences, Beijing, 100049, China

*To whom correspondence should be addressed. E-mails: yuhw@iga.ac.cn

Experimental results

Figure S1. Photographs of (a) TiO₂-80%, (b) Fe-0.5-TiO₂, (c) and Fe-5-TiO₂.

Percentage of {001} facets was calculated as follows, which is refer to our previous study and other authoritative references. ¹⁻³ According to the value of **Table S1** and following equations, $S_{001}\% = \sim 80\%$

Figure S2. (A) The planform of anatase TiO_2 nanosheet. (B) Equilibrium model of anatase TiO_2 crystal.

Equations:

$$S_{001} = 2a^{2} \qquad S_{001} \% = \frac{S_{001}}{S_{001} + S_{101}}$$

$$S_{101} = 8(S_{OBD} - S_{OAC}) = 8(\frac{1}{2}OF \cdot BD - \frac{1}{2}OE \cdot AC) = \frac{2a^{2}}{2a^{2} + \frac{2(b^{2} - a^{2})}{\cos \theta}} = \frac{1}{1 + \frac{(\frac{b^{2}}{a^{2}} - 1)}{\cos \theta}} = \frac{2(b^{2} - a^{2})}{\cos \theta} = \frac{2(b^{2} - a^{2})}{\cos \theta} = \frac{1}{1 + \frac{(\frac{b^{2}}{a^{2}} - 1)}{\cos \theta}} = \frac{\cos \theta}{\cos \theta + (\frac{a}{b})^{-2} - 1}$$

Where $a = b - h/tag \theta$. The values of *b* and *h* were determined as showed as TEM image, θ is the theoretical value for the angle between the {101} and {001} facets of

anatase, 68.3°. As indicated in the planform, two parameter *a* and *b* denote lengths of the side of square {001} 'truncation' facets and the side of bipyramid. The ratio of {001} facets to total surface area can be described by the value of *Sooi/S* or *a/b* ($0 \le a/b \le 1$).

sample	phase	b (nm) ^[a]	h (nm) ^[a]	S_{001} %	BET (m ² /g)
TiO ₂ -80%	А	80-90	7-9	~80	89
TiO ₂ -60%	А	30-40	6-8	~60	87
Fe-0.5-TiO ₂	А	80-90	7-9	~80	95
P25	A, R	25	-	-	90

Table S1. Physical Properties of Different Samples

[a] b and h: side length and thickness of TiO_2 -60% nanosheets, respectively, are estimated by TEM image analysis (Figure S4).

Figure S3. SEM image of Fe-0.5-TiO₂.

Figure S4. TEM image of TiO₂-60%.

Figure S5. Photocatalytic degradation of MO under UV-light irradiation (200-400 nm, 310 mW/cm^2) over Fe-X-TiO₂ (X = Fe/TiO₂ wt%).

In order to comparison the photocatalytic activity between the Fe-0.5-TiO₂ and noble metal-modified anatase TiO₂, TiO₂-Pt_{0.5} was prepared according to our previous study. ⁴ And the photocatalytic activity was estimated by degradation of MO under simulate solar-light illumination. The result was shown in **Figure S6**. It can be seen that, TiO₂-Pt_{0.5} shows high photocatalytic efficiency than that of Fe-0.5-TiO₂. The MO was completely degraded within 20 min with the degradation rate of 100%.

Figure S6. The photocatalytic activity of Fe-0.5-TiO₂ and TiO₂-Pt_{0.5}

Figure S7. Adsorption capability of Fe-0.5-TiO₂ towards MO and p-CP within 1h in dark.

Figure S8. (a) UV–vis spectra variation of the p-CP solution under simulated solarlight irradiation (200 mW/cm²) over Fe-0.5-TiO₂.

Figure S9 The content of TOC in each system.

Figure S10. Photocatalytic activity of Fe-0.5-TiO₂ towards MO degradation in the presence of different scavengers.

References:

- 1. L. Sun, Z. Zhao, Y. Zhou and L. Liu, *Nanoscale*, 2012, **4**, 613-620.
- 2. H. G. Yang, C. H. Sun, S. Z. Qiao, J. Zou, G. Liu, S. C. Smith, H. M. Cheng and G. Q. Lu, *Nature*, 2008, **453**, 638-641.
- 3. Q. Xiang, J. Yu and M. Jaroniec, *Chemical Communications*, 2011, **47**, 4532-4534.
- 4. N. Guo, Y. Zeng, H. Li, X. Xu and H. Yu, *Materials Letters*, 2018, **221**, 183-186.