Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

Electronic supplementary materials

Support effect in oxidative desulfurization by SILCs with Mo- and Wheteropolyanions

A. G. Ali-Zade^{*a*}, A. K. Buryak^{*b*}, V. M. Zelikman^{*a*}, K.V. Oskolok^{*a*}, I. G. Tarkhanova^{*a*}*

Figure S1. SEM-EDA analysis spectra (a) and images (b,c) for PMo-Silochrome

Figure S2. SEM-EDA analysis spectra (a) and images (b,c) for PW-Silochrome

Figure S3. SEM-EDA analysis spectra (a) and images (b,c) for PMo- Perlkat

Figure S4. SEM-EDA analysis spectra (a) and images (b,c) for PW- Perlkat

Figure S5. Nitrogen adsorption-desorption isotherms (A) and BJH pore size distribution (B) curve of PMo- Perlkat

Figure S6. Nitrogen adsorption-desorption isotherms (A) and BJH pore size distribution (B) curve of PW- Perlkat

Figure S7. Nitrogen adsorption-desorption isotherms (A) and BJH pore size distribution (B) curve of PMo- Silochrome

Figure S8. Nitrogen adsorption-desorption isotherms (A) and BJH pore size distribution (B) curve of PW- Silochrome

Figure S9. SALDI mass spectra of PMo-Perlkat catalysts recorder in the negative ion direction mode

Figure S10. SALDI mass spectra of PW-Perlkat recorder in the negative ion direction mode

Figure S11. SALDI mass spectra of PMo-silochrome recorder in the negative ion direction mode

Figure S12. SALDI mass spectra of PW-silochrome recorder in the negative ion direction mode

Figure S13. SALDI mass spectra of PW-acid on Perlkat recorder in the negative ion direction mode

Table S1. Sulfur removal from the diesel fuel, the comparison with literature results

Substrate	Initial sulfur	Final sulfur	Reference
	content,ppm	content,ppm	
	1080	7	this article
Diesel fuel	559,7	4,8	1
	746	181,2	2
	659,7	8,62	3
	2300	391	4
	500	6	5

References

 Wang, J.; Zhang, L.; Sun, Y.; Jiang, B.; Chen, Y.; Gao, X.; Yang, H (2018) Deep catalytic oxidative desulfurization of fuels by novel Lewis acidic ionic liquids. Fuel Process. Technol 177:81–88.

- Safa, M., Mokhtarani, B., Mortaheb, H. R., Tabar Heidar, K., Sharifi, A., & Mirzaei, M (2017) Oxidative Desulfurization of Diesel Fuel Using a Brønsted Acidic Ionic Liquid Supported on Silica Gel. Energy & Fuels 31:10196–10205.
- Jiang, B., Yang, H., Zhang, L., Zhang, R., Sun, Y., Huang, Y (2016) Efficient oxidative desulfurization of diesel fuel using amide-based ionic liquids. Chemical Engineering Journal 283:89-96.
- D. Julião, A.C. Gomes, M. Pillinger, R. Valença, J.C. Ribeiro, B. de Castro, I.S. Gonçalves, L. Cunha Silva, S.S. Balula (2016) Zinc-substituted polyoxotungstate@amino- MIL-101(Al) An efficient catalyst for the sustainable desulfurization of model and real diesels. Eur. J. Inorg. Chem 32:5114–5122.
- Sunder Lal., Deeptiraj Pant (2015) Catalytic Oxidative Desulfurization (ODS) by Using HPA supported Alumina Catalyst. International Research Journal of Engineering and Technology (IRJET) 2:1396-1400.