Electronic Supplementary Information for

A new visible light triggered Arrhenius photobase and its photo-

induced reactions

Joonyoung F. Joung,† Jeeun Lee,† Joungin Hwang, Kihang Choi*, and Sungnam Park*

Department of Chemistry and Research Institute for Natural Science, Korea University, Seoul, 02841, Korea

*E-mail: kchoi@korea.ac.kr (K.C.), spark8@korea.ac.kr (S.P.)

† These authors contributed equally to this work.

Contents

- 1. Methods.
- 2. Theoretical estimation of pK_b value of NO₂-Acr-OH in water
- 3. Temperature-dependent pK_b of NO₂-Acr-OH in aqueous solutions
- 4. Table S1. Quantum chemical calculation results for pK_b of Arrhenius photobases.
- 5. Figure S1. The Born-Haber cycle of Arrhenius photobase and Calculated $\Delta_{solu}G$ and absorption spectra
- 6. Figure S2. The plot of experimental pK_b values against calculated pK_b values.
- 7. Figure S3-4. Temperature-dependent absorption spectra of NO₂-Acr-OH in aqueous solutions.
- 8. Figure S5. Temperature-dependent pK_b value of NO₂-Acr-OH in aqueous solution.
- 9. Figure S6. Fluorescence spectra of $NO₂-Acr-OH$ and $NO₂-Acr⁺$ in aqueous solution.
- 10. Figure S7-8. TRF signals of NO2-Acr-OH in degassed and O2 saturated solvents.
- 11. Figure S9-S11. ¹H and ¹³C NMR spectra
- 12. References

1. Methods

Synthesis

10-methyl-2-nitroacridin-9(10H)-one (1)

10-Methylacridin-9(10H)-one (0.30 g, 1.4 mmol) in acetic acid (3 mL) was stirred vigorously and then nitric acid (60%, 1.5 mL) was added. After stirring for two hours at 50 °C, the solution was cooled in an ice bath and water was slowly added. The mixture was extracted with dichloromethane twice and the combined organic layers were washed with saturated aqueous NaHCO₃ and brine, dried with Na₂SO₄, and concentrated under reduced pressure. The residue was purified by SiO_2 chromatography to give compound 1 as a yellow solid (0.33 g, 91%). ¹H NMR (500 MHz, DMSO-d₆, TMS): δ =9.05 (d, ⁴J = 2.9 Hz, 1H), 8.54 (dd, ³J = 9.6 Hz, ⁴J = 2.9 Hz, 1H), 8.36 (dd, $3J = 7.9$ Hz, $4J = 1.5$ Hz, 1H), 8.07 (d, $3J = 9.6$ Hz, 1H), 7.91–7.98 (m, 2H), 7.47 (m, 1H), 4.02 ppm (s, 3H).

10-methyl-2-nitro-9-phenyl-9,10-dihydroacridin-9-ol $(2, NO₂-Acr-OH)$

To the solution of compound 1 (0.10 g, 0.39 mmol) in dry THF (3 mL), phenylmagnesium bromide (3.0 M in diethyl ether, 0.20 mL) was added slowly. After stirring for three hours at room temperature, the reaction was quenched by adding saturated aqueous NH4Cl solution (10 mL). The mixture was extracted with dichloromethane twice and the combined organic layers were washed with brine, dried with Na2SO4, and concentrated under reduced pressure. The residue was purified by $SiO₂$ chromatography (EtOAc : hexane = 1 : 4) to give compound 2 as a light brown solid (25 mg, 19%). ¹H NMR (500 MHz, CDCl₃, TMS): δ =8.46 (d, ⁴J = 2.8 Hz, 1H), 8.16 (dd, $3J = 9.2$ Hz, $4J = 2.8$ Hz, 1H), 7.56 (dd, $3J = 7.7$ Hz, $4J = 1.5$ Hz, 1H), 7.38 (m, 1H), 7.18–7.27 (m, 5H), 7.10–7.14 (m, 2H), 7.03 (d, $3J = 9.1$ Hz, 1H), 3.58 (s, 3H), 2.75 ppm

 $(s, 1H);$ ¹³C NMR (125 MHz, CDCl₃, TMS): δ =146.1, 144.5, 141.0, 138.6, 129.2, 129.0, 128.8, 128.3, 127.5, 127.4, 125.9, 124.5, 124.0, 122.7, 113.1, 112.3, 72.8, 34.1 ppm.

Sample preparation

All chemicals were purchased and used as received from Sigma-Aldrich or Tokyo Chemical Industry. For absorption, steady-state emission, and time-resolved fluorescence (TRF) experiments, a stock solution of NO₂-Acr-OH was prepared in methylene chloride and ethanol and diluted to prepare the final solutions. Sample solutions were degassed with argon prior to TRF experiments.

Experimental methods

All UV-visible absorption spectra of the sample solutions in a 10×10 mm quartz cuvette were taken by using a UV−visible spectrometer (Cary 100, Varian) in the wavelength range of 200−800 nm. The baselines were corrected by the absorption spectrum of the reference solution. Time-resolved fluorescence (TRF) signals of the sample solutions were collected at a series of wavelengths by using a time-correlated single-photon counting (TCSPC) technique. The excitation pulse duration is about ~80 ps and the TRF signals are measured by a photomultiplier tube. The instrumental response time of our TRF experimental setup is measured to be \sim 120 ps. Our TRF experimental method has been described in detail elsewhere.¹ After the TRF experiments were finished, the UV−visible absorption spectrum of the sample solution was measured again and compared with the spectrum measured before the TRF experiment to check any undesired photodegradation during the experiments. We found that there was no significant degradation of the sample.

Quantum chemical calculations (QCC)

For the prediction of pK_b values, the geometry optimization and calculation of vibrational frequency and solvation energies of all species are performed using the density functional theory (DFT) and time-dependent DFT with the LC- ω PBE functional and 6-31+G(d) basis set

as implemented in the Gaussian 16 software package.² The solvation energy is computed by using the SMD solvation model.³ The pK_b values calculated with the LC- ω PBE functional agree most with experimental pK_b values.

2. Theoretical estimation of pK_b value of NO2-Acr-OH in water

The pK_b values of Arrhenius photobases can be readily estimated by using the scheme in Figure S1(a) and quantum chemical calculations. For a dissociation reaction of Arrhenius photobases (ROH \rightarrow R⁺ + OH⁻) in aqueous solutions, the pK_b value is directly related to the Gibbs energy of a reaction $(\Delta_{\text{solu}}G)$ in solution,

$$
pK_{b} = \frac{\Delta_{\text{solu}}G}{RT \ln 10}
$$
 (1)

where R and T are the gas constant and 298.15 K, respectively, and

$$
\Delta_{\text{solu}} G = \Delta G(\mathbf{R}^+) + \Delta_{\text{solv}} G(\mathbf{R}^+) + \Delta G(\mathbf{OH}^-) \n+ \Delta_{\text{solv}} G(\mathbf{OH}^-) - \Delta G(\mathbf{ROH}) - \Delta_{\text{solv}} G(\mathbf{ROH})
$$
\n(2)

where $\Delta G(R^+)$ and $\Delta G(ROH)$ are the Gibbs energies, and $\Delta_{solv}G(R^+)$ and $\Delta_{solv}G(ROH)$ are the Gibbs energies of solvation.³ The Gibbs energies are readily obtained by DFT calculations (LC- ω PBE/6-31+G(d)) as described in the methods. $\Delta G(OH^-)$ and $\Delta_{solv}G(OH^-)$ in Eq.(2) are obtained by the method which was proposed by Matshui and coworkers.⁴⁻⁶ By introducing a scaling factor, s, the pK_b is re-written and rearranged as (ROH) are the Gibbs energies, and $\Lambda_{\text{solv}}G(\text{R}^+)$ and $\Lambda_{\text{solv}}G(\text{ROH})$ are the

tation.³ The Gibbs energies are readily obtained by DFT calculations (LC-

described in the methods. $\Lambda G(\text{OH}^-)$ and $\Lambda_{\text{solv}}G(\text{OH$

$$
pK_{b} = \frac{s\Delta_{\text{solu}}G}{RT\ln 10}
$$

=
$$
\frac{s}{RT\ln 10} \left\{\Delta G(\mathbf{R}^{+}) + \Delta_{\text{solv}}G(\mathbf{R}^{+}) - \Delta G(\text{ROH}) - \Delta_{\text{solv}}G(\text{ROH})\right\}
$$

+
$$
\frac{s}{RT\ln 10} \left\{\Delta G(\text{OH}^{-}) + \Delta_{\text{solv}}G(\text{OH}^{-})\right\}
$$

= $k\Delta G + C$ (3)

where $\Delta G = \Delta G(R^+) + \Delta_{solv}G(R^+) - \Delta G(ROH) - \Delta_{solv}G(ROH)$, $k = s/RT\ln 10$, and $C =$ $s\{\Delta G(OH^{-}) + \Delta_{solv}G(OH^{-})\}/RT\$ In10. Note that the scaling factor s in Eq. (3) is used to include

the activity coefficients in aqueous solution and correct some errors that might result from the exchange-correlation functional in the density functional theory (DFT), the basis set, and the cavity model used in the polarizable continuum model (PCM) method. The pK_b values of Arrhenius photobases are shown to be linearly proportional to ΔG in Eq. (3). As shown in Figure S1, we calculated the pK_b values for previously studied Arrhenius photobases in Figure 1(a) by using Eq. (3) $7-9$ and the calculation results are summarized in Table S1. As shown in Figure S2(b), the pK_b values of Arrhenius photobases in Figure 1(a) are linearly proportional to ΔG with $k = 0.18536$ mol/kJ, $C = -36954.1$, and $s = 4.427$. The value of $\Delta G(OH^{-})$ + $\Delta_{\text{solv}}G(OH^{-})$ is determined to be -199360.5 kJ/mol. Our calculated p K_b values are in excellent agreement with experimentally determined ones as shown in Figure S2, which indicates that our method is quite reliable to predict the pK_b values of Arrhenius photobases.

3. Temperature-dependent pK_b of NO2-Acr-OH in aqueous solutions

In Figure S3, the absorption spectra of $NO₂$ -Acr-OH and $NO₂$ -Acr⁺ at temperature from 10 to 80 °C are collected using aqueous solutions containing 10 mM NaOH or 10 mM $H₂SO₄$, respectively. In phosphate buffer solutions at temperature from 10 to 80 $^{\circ}$ C, NO₂-Acr-OH exists in acidic and basic forms as shown in Figure S4. The acid and base concentrations can be calculated by decomposing the spectra into the individual spectra of $NO₂$ -Acr-OH and $NO₂$ -Acr⁺. The base dissociation constant of NO₂-Acr-OH is

$$
K_b = \frac{a(\mathbf{R}^+)a(\mathbf{OH}^-)}{a(\mathbf{ROH})}
$$
(4)

where $a(j)$ is the activity of involved species *j*. Eq. (4) can be rearranged to

$$
pK_b = pOH - \log \frac{[R^+] \cdot \gamma_{R^+}}{[ROH]}
$$
 (5)

where, [j] and γ_i are the molar concentration and the activity coefficient of j, respectively. The activity coefficient of neutral species is assumed to be unity. In phosphate buffer, $H_2PO_4^$ dissociates as

$$
H_2PO_4^- \rightleftharpoons H^+ + HPO_4^{2-} \tag{6}
$$

In phosphate buffer solution, pH of the solution is given by

$$
pH = pK_a + \log \frac{[HPO_4^{2-}] \cdot \gamma_{HPO_4^{2-}}}{[H_2PO_4^-] \cdot \gamma_{H_2PO_4^-}}
$$
(7)

In this study, temperature-dependent p K_a of H₂PO₄⁻ was taken from the literature.¹⁰ In order to calculate the activity coefficient for the ionic species, it is desirable to use the extended Debye-Hückel law in the form

$$
\log \gamma_j = \frac{-z_j^2 A \sqrt{I}}{1 + d_j B \sqrt{I}}
$$
\n(8)

$$
I = \frac{1}{2} \sum_{j} z_{j}^{2} c_{j}^{2} \gamma_{j}^{2}
$$
 (9)

where z_j and c_j are the ionic charge and concentration of the species, respectively, and $A = 0.509$ mol^{-1/2} kg^{1/2}, $B = 0.328$ mol^{-1/2} kg^{1/2} at 25 °C, and d_j is the effective diameter of the ionic species. The effective diameters of ions were taken from the literature.¹¹ The effective diameter of NO₂-Acr⁺ was assumed to be 8 Å.^{1, 11} Calculation of the ionic strength, *I*, must include all the ionic species in the phosphate buffer. To get the concentrations of all ionic species, the chargebalance and mass-balance equation and the dissociation constant of water are necessary.

$$
[H^+] + [R^+] + [Na^+] = [H_2PO_4^-] + 2[HPO_4^{2-}] + [OH^-]
$$
\n(10)

$$
[\mathrm{H}_{2}\mathrm{PO}_{4}^{-}] + [\mathrm{HPO}_{4}^{2-}] = c_{0}
$$
\n(11)

$$
K_{w} = [H^{+}]\gamma_{H^{+}}[OH^{-}]\gamma_{OH^{-}}
$$
 (12)

where c_0 is the total concentration of the phosphate and the concentration of Na⁺ was assumed to be independent of the temperature. The temperature-dependent pK_w was taken from the literature.¹⁰ By iterative calculation, the activity coefficient of ionic species, the pH of solutions, the concentration of the species involved in equilibrium, and the pK_b of NO₂-Acr-OH were obtained. In Figure S5, temperature-dependent pK_b of NO₂-Acr-OH is plotted. The measured pK_b values were fitted to the functional form¹² of

$$
pK_b = A + \frac{B}{T} + C \ln(T) + D \cdot T + \frac{E}{T^2}
$$
\n(13)

which is the form of pK_b when ΔC_p is expressed as

$$
\Delta C_p(T) = -\ln(10)R(C + 2DT + 2E/T^2)
$$
\n(14)

where T is in Kelvin. The fitting parameters $A-E$ were obtained by non-linear regression to give

$$
pK_b = 14350 + \frac{-771867}{T} - 2286.99 \cdot \ln(T) + 2.5 \cdot T + \frac{47241800}{T^2}
$$
 (15)

The pK_b of NO₂-Acr-OH is calculated to be 7.63 at 25 °C, which is in good agreement with the estimated value of 7.69, within experimental error.

To calculate the thermodynamic functions, Eq. (13) can be differentiated to give

$$
\Delta H(T) = \ln(10)R\left(B - CT - DT^2 + 2E/T\right)
$$
\n(16)

$$
\Delta S(T) = -\ln(10)R(A + C + C \ln T + 2DT - E/T^{2})
$$
\n(17)

At 25 °C, ΔH , ΔS , and ΔC_p is calculated to be 89.2 kJ mol⁻¹, 153 J mol⁻¹ K⁻¹, and 5105 J $mol^{-1} K^{-1}$, respectively.

11

Figure S1. (a) The Born-Haber cycle of Arrhenius photobase. (b) Calculated $\Delta_{solu}G$ of hydroxide ion dissociation reaction and experimentally determined pK_b values. The red line is a linear fit to the data points. The fitting parameters are obtained to be $k=0.18536$ mol/kJ and $C=-36954.1$ in Eq. (3). (c) Calculated absorption spectra of NO₂-Acr-OH and NO₂-Acr⁺.

Figure S2. The plot of experimental pK_b values against calculated pK_b values. The dashed line is obtained by connecting the points where the calculated pK_b values are equal to the experimental pK_b values.

Figure S3. Temperature-dependent absorption spectra of NO₂-Acr-OH in (a) aqueous 10 mM NaOH solution, (b) aqueous $10 \text{ mM } H_2$ SO₄ solution

Figure S4. Temperature-dependent absorption spectra of NO₂-Acr-OH in phosphate buffer solutions.

Figure S5. Temperature-dependent pK_b values of NO₂-Acr-OH in aqueous solution.

Figure S6. Absorption-corrected emission spectra of (a) 9,10-diphenylanthracence in ethanol (Φ_{PLQY} =0. 95) and (b) NO₂-Acr-OH and NO₂-Acr⁺ in aqueous solution (λ_{ex} =375 nm).

Figure S7. TRF signals of NO₂-Acr-OH in degassed and O_2 saturated (a) DMSO, (b) ACN, (c) ethanol, (d) methanol, (e) toluene, and (f) THF. (λ_{ex} =375 nm)

Figure S8. TRF signals of NO₂-Acr-OH in degassed and O₂ saturated DMSO measured at λ_{em} =600 nm. (λ_{ex} =375 nm)

PPM 8.4 8.0 7.6 7.2 6.8 6.4 6.0 5.6 5.2 4.8 4.4 4.0 3.6 3.2 2.8 2.4 2.0 1.6 1.2 0.8 0.4 $\overline{}$

Figure S9. ¹H NMR spectrum of 1

Figure S10. ¹H NMR spectrum of 2

Figure S11. 13 C NMR spectrum of 2

References

- 1. J. F. Joung, S. Kim and S. Park, J. Phys. Chem. B, 2015, 119, 15509-15515.
- 2. G. W. T. M. J. Frisch, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Journal, 2016.
- 3. A. V. Marenich, C. J. Cramer and D. G. Truhlar, J. Phys. Chem. B, 2009, 113, 6378-6396.
- 4. T. Matsui, A. Oshiyama and Y. Shigeta, Chem. Phys. Lett., 2011, 502, 248-252.
- 5. T. Matsui, T. Baba, K. Kamiya and Y. Shigeta, Phys. Chem. Chem. Phys., 2012, 14, 4181- 4187.
- 6. T. Matsui, Y. Shigeta and K. Morihashi, J. Chem. Theory Comput., 2017, 13, 4791-4803.
- 7. Y. Xie, H. L. Luk, X. Yang and K. D. Glusac, J. Phys. Chem. B, 2015, 119, 2498-2506.
- 8. Y. Xie, S. Ilic, S. Skaro, V. Maslak and K. D. Glusac, J. Phys. Chem. A, 2017, 121, 448- 457.
- 9. D. Zhou, R. Khatmullin, J. Walpita, N. A. Miller, H. L. Luk, S. Vyas, C. M. Hadad and K. D. Glusac, J. Am. Chem. Soc., 2012, 134, 11301-11303.
- 10. D. R. Lide, CRC Handbook of chemistry and physics, CRC press, Boca Raton, Florida, 83rd edn., 2002.
- 11. J. Kielland, J. Am. Chem. Soc., 1937, 59, 1675-1678.
- 12. S. Park, C. Kim, M. H. Kim, I.-J. Lee and K. Kim, J. Chem. Soc., Faraday Trans., 1998, 94, 1421-1425.