Supplementary information

Facile Fabrication of Si/Sb/Sb₂O₃/G@C Composite Electrodes for High-Performance Li-Ion Batteries

Feiyuan Sun,^a Hao Feng,^a Shilun Gao,^a Dandan Yang,^{*b} and Huabin Yang^{*a,c}

^a Institute of New Energy Material Chemistry, School of Materials Science and

Engineering, Nankai University, Tianjin 300350, China.

^b Experimental Teaching Center of Materials Science, School of Materials Science and

Engineering, Nankai University, Tianjin 300350, China.

^c Tianjin Key Laboratory of Metal and Molecule Based Material Chemistry, School of Materials Science and Engineering, Nankai University, Tianjin 300350, China.

[*] Dandan Yang: ddyang@nankai.edu.cn; Huabin Yang: hb_yang@nankai.edu.cn

Fig. S1. Raman spectra of the Si/Sb/Sb₂O₃/G@C composite material.

Fig. S2. Cyclic voltammetry (CV) curves of the Si/G@C electrode in the initial 5 cycles (a) and at different scanning speed (b).

Fig. S3. Galvanostatic charge–discharge profiles of the Si/G@C electrode at different cycles.

Fig. S4. Cycling performance and Coulombic efficiency of $Si/Sb/Sb_2O_3/G@C$ electrode at the high current density of 1C (1C=1000 mA g⁻¹).