Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

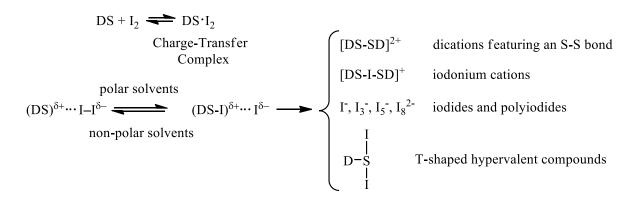
Supporting Information

Oxidant/Complexing Properties of the Methimazole (MeImHS)/Iodine System Towards Palladium and Gold Metals. Crystal structure of the complex cation [Pd^{II}(MeImHS)4]²⁺ balanced by a tetraiodide/iodide mixture.

Francesco Isaia,^{*a} Maria Carla Aragoni,^a Massimiliano Arca,^a Claudia Caltagirone,^a Carlo Castellano,^b Francesco Demartin,^b Alessandra Garau,^a Vito Lippolis,^a and Tiziana Pivetta^a. ^aDipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Cittadella Universitaria, 09042 Monserrato (CA), Italy. Tel: +39 070 6754496. E-mail: <u>isaia@unica.it</u> ^bDipartimento di Chimica, Università degli Studi di Milano, via Golgi 19, 20133 Milano. Italy.

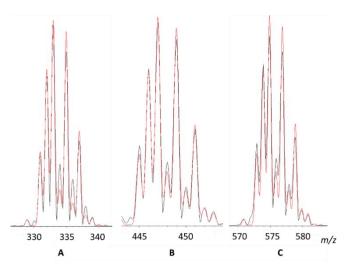
Table of Contents

Oxidative Dissolution of Metals by Thioamide – Iodine Agents: Considerations	page S2
Scheme S1 Reactivity of Thioamide-Iodine Charge-Transfer Complexes	page S2
Fig. S1 Fitting of the Isotopic pattern for [Pd(L-H)L] ⁺	page S3
Fig. S2 Picture of Palladium Deposited on Magnesium Powder	page S4
Fig. S3 Infrared spectrum of complex [Pd(MeImHS) ₄](I ₄) _{0.73} (I) _{0.27}	page S4
Fig. S4 Infrared spectrum of complex [Au(MeImHS) ₂]I ₃	page S4

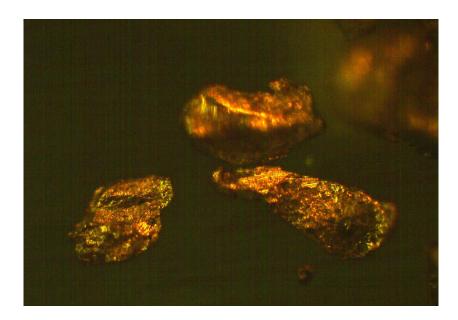

Factors that influence the course of the reaction (1):

$$DS \cdot I_2 + M^0 \xrightarrow{Et_2O - CH_2Cl_2 - H_2O} \text{ oxidized / complexed metal}$$
(1)

- The thioamido DS unit should be stable enough to prevent its oxidation by iodine with formation of disulphides and (poly)-iodides derivatives (Scheme S1). Under these circumstances, the oxidation/complexation of metals is not observed. If the charge-transfer complex DS-I₂ is in equilibrium with DS and I₂ (Scheme S1), due to a low value of the equilibrium constant, the latter species can react with the oxidized/complexed metal, with the result that the outcome of reaction (1) becomes unpredictable.


- Even if the oxidation of metals often occurs under the experimental conditions outlined in reaction (1), with formation of "hard" ions [R. G. *Pearson: "Hard and Soft Acids and Bases". J. Am. Chem. Soc.*, <u>1963</u> **85**(22), 3533–3539], the corresponding complexes with the thioamido DS are difficult to isolate since the "soft" *S*-donor atom is intrinsically a poor coordinating agent towards these ions, and the formation of dense oils is commonly observed.

- Reaction conditions (solvent, temperature, reaction time, mode of stirring) and the DS/I_2 to M^0 molar ratio influence the outcome of the reaction and need to be optimised to favour both a high metal oxidation yield, and the formation of purer compounds.



Scheme S1 Top: in non-polar solvents, compounds containing *S*-donor Lewis base (DS) generally form only 1 : 1 charge–transfer complexes with I₂. The formation constant of the 1 : 1 complex (K_f) depends on the equilibrium molar concentrations according to the equation $K_f = [DS \cdot I_2]/[DS][I_2]$.¹ Bottom: the interaction between DS and I₂ to give 1 : 1 adducts containing an almost linear S–I–I fragment can be seen as a charge–transfer process $n \rightarrow \sigma^*$ (i.e. MO combination of a lone pair from the donor with the empty σ^* orbital of I₂). Depending on the charge density transferred by the DS donor molecule to I₂ and the nature of the solvent, this can result in lengthening of the I–I bond and finally the breaking of this bond and formation of new species.²

¹ M. C. Aragoni, M. Arca, F. A. Devillanova, A. Garau, F. Isaia, V. Lippolis and G. Verani, Coord. Chem. Rev., 1999, 184, 271–290; and references therein. ² W. T. Pennington, T. W. Hanks and H. D. Arman, in Halogen Bonding with Dihalogens and Interhalogens: Fundamentals and Applications, ed. P. Metrangolo and G. Resnati, Spinger-Verlag, Berlin, 2008, pp. 65–104, and references therein.

Fig. S1 Fitting of the isotopic pattern for $[Pd(L-H)L]^+$ (333 m/z), $[Pd(L-H)L_2]^+$ (447 m/z) and $[PdL_3I]^+$ (575 m/z), red line calculated pattern, black line experimental pattern. L = MeImHS.

Fig. S2 Palladium deposited on magnesium powder, image captured with a MOTIC BA210E, Epi-LED S Fluorescence attachment – Exciter 480SP Dichroic 505LP Barrier 520LP.

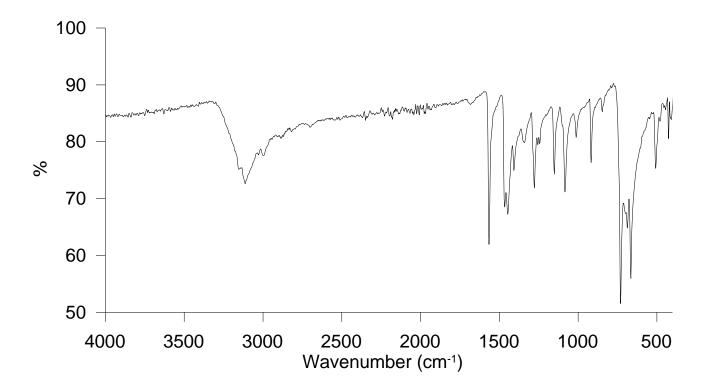


Fig. S3 Infrared spectrum of complex [Pd(MeImHS)₄](I₄)_{0.73} (I)_{0.27}

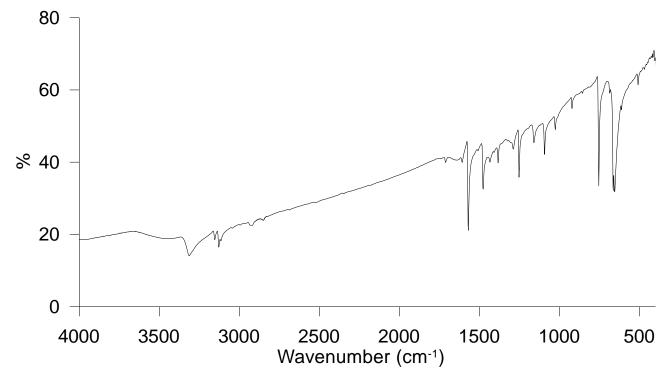


Fig. S4 Infrared spectrum of complex [Au(MeImHS)₂]I₃.