Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

Electronic Supplementary Information

Regioselective condensation of hydroxyaromatic compounds with 2,5-dimethoxytetrahydrofuran: Facile one-pot synthesis of new substituted diaryl-fused 2,8-dioxabicyclo[3.3.2] nonanes comprising central ketal moieties

Ali Rahmatpour*, Pourya Aslani

Polymer Chemistry Research Laboratory, Faculty of Chemistry, Shahid Beheshti University, P. O. Box: 19839-4716, Tehran, Iran; Fax: +98 21 22431671; Tel: +98 21 29903250

Corresponding author E-mail: a rahmatpour@sbu.ac.ir

Table of contents	Page
Materials and instrumentation	1
General experimental method for 4d	2
Synthetic procedure for 4d using TFA system	2
Synthetic procedure for 8 using TFA system	2
Crystal data of 4d	3
Spectral data for compound 4d	4-9
(Copies of ¹ HNMR, expanded ¹ H NMR , 13 C NMR and Mass spectra, IR of 4d).	
Mass spectra data of compounds $4a$, $4b$	10
HRMS of compund 6	11

General experimental methods (Materials and instruments): Unless otherwise stated, solvents and all reagents were commercially purchased and used without further purification. Melting points were determined with a Buchi 535 melting point apparatus. UV spectra were recorded on a Pharmacia Biotech Ultraspec 3000 model 80-2106-20 spectrometer. IR and FTIR spectra were recorded using a Perkin-Elmer781and Unicam Matteson 1000 spectrometers, respectively.¹HNMR and ¹³CNMR spectra were recorded on a 250 MHz Bruker Avance DPX-250 spectrometer using tetramethyl silane (TMS) as an internal standard at 25 °C with frequencies of 250 and 62.9 MHz for the ¹H and ¹³C NMR spectra, respectively (CDCl₃ or DMSO as a solvent). Mass spectra were recorded on GCMS-Trio1000 (Fisons) and Shimadzo

GCMS-Qp1000 EX instruments at 70 eV. Elemental analysis was performed on a Heraeus CHN-O-Rapid system.

Typical experimental procedure for 4d:

Phenolic compound 1d (2.0 mmol), 2,5-dimethoxytetrahydrofuran (2, 1equiv.), and *p*-TSA (34 mg, 0.1 mmol) were dissolved in CH_2Cl_2 (20 mL) under nitrogen atmosphere. The resulting mixture was stirred at room temperature for 3 h. The reaction mixture was then transferred to a separatory funnel containing water and extracted with CH_2Cl_2 (2 × 20 mL). The combined organic extracts were dried over Na₂SO₄, and solvent was removed in *vacuo*. The crude product 4d thus obtained were found to be clean upon TLC examination. The crude product was purified by recrystallizing from acetic acid. Yield 80%.

Synthetic procedure for 4d using TFA system:

Phenolic compound (1d, 2 mmol) was dissolved in CH_2Cl_2 (10 mL) and TFA (10 mL). 2,5dimethoxytetrahydrofuran (2, 1 mmol) was added over 0.5 h while stirring was continued for an additional 3 h, after which the reaction was quenched with excess saturated aqueous Na₂CO₃. The organic layer was extracted with CH_2Cl_2 , dried with MgSO₄, and the solvent was evaporated in *vacuo*. The crude product 4d thus obtained were found to be clean upon TLC examination. The crude product was purified by recrystallization. Yield 75%.

Synthetic procedure for 8 using TFA system:

2,7-dihydroxynaphthalene (7, 2 mmol) and 2,5-dimethoxytetrahydrofuran (2, 2 mmol, 1/1 mole ratio) and trifluoroacetic acid, TFA (10 mL) in CH_2Cl_2 (10 mL) were mixed in a roundbottomed flask at room temperature. The reaction mixture was then stirred at room temperature for 5 h and then the reaction mixture was quenched with excess saturated aqueous Na₂CO₃. The organic layer was extracted with CH_2Cl_2 , dried with MgSO₄, and the solvent was evaporated in *vacuo*. The crude product was washed with water several times and boiled with water to remove unreacted diphenol. The residue was purified by recrystallizing from ethanol-water (5/1,v/v) mixture to afford **8** as white solid in 71% yield.

Crystal data

 $C_{18}\,H_{16}\,Cl_2\,O_2$

Mr = 696 F000

Z, Calculated density 4, 1.407 Mg/m^3

Temperature 298(2) K

 $a = 22.398(5) A^{\circ}$

 $b = 9.4469(19) A^{\circ}$

 $c = 7.4776(15) A^{\circ} \theta = 1.8-28.0^{\circ}$

alpha = 90 deg μ = 0.07 mm-1

beta = 90

gamma = 90

Crystal size $0.50 \ge 0.45 \ge 0.40$ mm

 λ , Wavelength 0.71073 A

