Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

Supporting Information

Tuning of the redox potential and catalytic activity of a new Cu(II) complex

by o-iminobenzosemiquinone as an Electron-reservoir ligand

Mina Nasibipour,^[a] Elham Safaei,^{*[a]} Grzegorz Wrzeszcz, ^[b] Andrzej Wojtczak ^[b]

*Corresponding address: Department of Chemistry, College of Sciences, Shiraz University, 71454, Shiraz, Iran.

Email: <u>e.safaei@shirazu.ac.ir</u>

Phone No. 00989173078406

contents		
IR spectrum of H ₂ L ^{NAP}	S2	
IR spectrum of CuL ^{NIS}	S2	
NMR spectrum of $H_2 L^{NAP}$	S3	
NMR spectrum of CuL ^{NIS}	S3	
Crystallographic data and structure refinement	S4	
Bond distances (Å) and bond angles (°)	S5	
Electronic spectrum of 2 mM CH_2Cl_2 solutions of $L_2^{NIS}Cu^{II}$ after homocoupling of phenyl acetylene reaction	S6	
¹ H NMR spectrum of 1,4-diphenyl buta-1,3-diyne	S7	
¹ H NMR spectrum of 1,4-di(pyridin-2-yl)buta-1,3-diyne	S8	
¹ H NMR spectrum of 1,4- <i>bis</i> (<i>p</i> -fluorophenyl)buta-1,3-diyne	S9	
¹ H NMR spectrum of 1,4- <i>bis</i> (<i>p</i> -tolyl)buta-1,3-diyne	S10	
¹ H NMR spectrum of 1, 4-bis(4-methoxyphenyl)buta-1,3-diyne	S11	
¹ H NMR spectrum of 1,4-bis(2-chlorophenyl)buta-1,3-diyne	S12	

Figure S4 ¹H NMR spectrum of CuL^{NIS}.

Table S1. Crystallographic data for CuL ^{NIS}			
Identification code	e1317a		
Empirical formula	C42 H48 Cu N4 O2		
Formula weight	704.38		
Temperature	293(2) К		
Wavelength	0.71073 Å		
Crystal system	Triclinic		
Space group	P-1		
Unit cell dimensions	a = 8.5030(5) Å		
	b = 10.8824(8) Å		
	c = 11.7661(10) Å		
	α = 114.768(8)°.		
	β = 90.404(6)°.		
	$\gamma = 92.966(5)^{\circ}.$		
Volume	986.78(14) Å ³		
Z	1		
Density (calculated)	1.185 Mg/m ³		
Absorption coefficient	0.591 mm ⁻¹		
F(000)	373		
Crystal size	0.518 x 0.298 x 0.130 mm ³		
Theta range for data collection	2.143 to 28.412°.		
Index ranges	-7<=h<=11, -13<=k<=13, -10<=l<=15		
Reflections collected	6811		
Independent reflections	4344 [R(int) = 0.0512]		
Completeness to theta = 25.000°	99.5 %		
Absorption correction	Analytical		
Max. and min. transmission	0.944680 and 0.838343		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	4344 / 0 / 257		
Goodness-of-fit on F ²	1.003		
Final R indices [I>2sigma(I)]	R1 = 0.0554, wR2 = 0.1439		
R indices (all data)	R1 = 0.0799, wR2 = 0.1741		
Extinction coefficient	n/a		
Largest diff. peak and hole	0.612 and -0.519 e.Å ⁻³		

Table S2. Selected bond lengths [Å] and angles [°] for CuL ^{NIS}				
Bonds		Angles		
Cu1-O1	1.9210(19)	01-Cu1-O1#1	180.0	
Cu1-O1#1	1.9210(19)	O1-Cu1-N1#1	96.82(8)	
Cu1-N1#1	1.928(2)	O1#1-Cu1-N1#1	83.18(8)	
Cu1-N1	1.928(2)	O1-Cu1-N1	83.18(8)	
01-C1	1.298(3)	O1#1-Cu1-N1	96.82(8)	
C1-C2	1.424(4)	N1#1-Cu1-N1	180.0	
C1-C6	1.448(4)	C1-O1-Cu1	113.53(17)	
C2-C3	1.371(4)	01-C1-C2	123.9(2)	
C2-C14	1.529(4)	01-C1-C6	116.6(2)	
C3-C4	1.428(4)	C2-C1-C6	119.5(2)	
C4-C5	1.361(4)	C3-C2-C1	116.7(2)	
C4-C18	1.539(4)	C3-C2-C14	122.5(2)	
C5-C6	1.416(4)	C1-C2-C14	120.8(2)	
C6-N1	1.340(3)	C2-C3-C4	124.7(3)	
N1-C7	1.412(3)	C5-C4-C3	118.9(2)	
C7-C8	1.380(4)	C5-C4-C18	122.0(3)	
C7-C12	1.395(4)	C3-C4-C18	119.1(2)	
C8-C9	1.381(5)	C4-C5-C6	119.7(3)	
C9-C10	1.373(6)	N1-C6-C5	126.4(2)	
C10-C11	1.374(5)	N1-C6-C1	113.1(2)	
C11-C12	1.383(4)	C5-C6-C1	120.4(2)	
C12-C13	1.446(5)	C6-N1-C7	120.4(2)	
C13-N2	1.133(5)	C6-N1-Cu1	113.56(18)	
C14-C17	1.530(5)	C7-N1-Cu1	125.82(17)	
C14-C15	1.534(4)	C8-C7-C12	118.6(3)	
C14-C16	1.538(4)	C8-C7-N1	121.5(3)	
C18-C21	1.485(7)	C12-C7-N1	119.8(3)	
C18-C20	1.511(8)	C7-C8-C9	121.1(3)	
C18-C20B	1.512(11)	C10-C9-C8	120.0(3)	
C18-C21B	1.528(11)	C9-C10-C11	119.6(3)	
C18-C19	1.532(8)	C10-C11-C12	120.9(3)	
C18-C19B	1.536(11)	C11-C12-C7	119.8(3)	
		C11-C12-C13	121.2(3)	
		C7-C12-C13	119.0(3)	
		N2-C13-C12	178.4(4)	
		C2-C14-C17	109.7(2)	
		C2-C14-C15	111.3(3)	
		C17-C14-C15	109.2(3)	
		C2-C14-C16	109.6(3)	
		C17-C14-C16	109.2(3)	
		C15-C14-C16	107.8(3)	
		C21-C18-C20	111.4(6)	
		C20B-C18-C21B	108.0(9)	
		C21-C18-C19	106.6(6)	
		C20-C18-C19	108.8(6)	
		C20B-C18-C19B	111.1(9)	
		C21B-C18-C19B	107.2(7)	
		C21-C18-C4	109.9(4)	
		C20-C18-C4	108.6(4)	
		C20B-C18-C4	113.4(5)	
		C21B-C18-C4	107.7(5)	
		C19-C18-C4	111.5(3)	
		C19B-C18-C4	109.2(4)	

Figure S5 Electronic spectrum of $L_2^{NIS}Cu^{II}$ solution in THF before coupling reaction

(without KOH and phenyl acetylene addition) (_) after reaction (with KOH and phenyl acetylene addition) (_).

Figure S6 ¹H NMR and ¹³C NMR spectrum of 1,4-diphenyl buta-1,3-diyne.

Figure S8 ¹H NMR and ¹³C NMR spectrum of 1,4-*bis*(*p*-fluorophenyl)buta-1,3-diyne.

Figure S9¹H NMR and ¹³C NMR spectrum of 1,4-*bis*(*p*-tolyl)buta-1,3-diyne.

Figure S10¹H NMR and ¹³C NMR spectrum of 1,4-bis(4-methoxyphenyl)buta-1,3-diyne.

Figure S11¹H NMR and ¹³C NMR spectrum of 1,4-bis(2-chlorophenyl)buta-1,3-diyne.