Supporting Information

High-yield lactic acid-mediated route for g-C₃N₄ nanosheet photocatalyst with enhanced H₂-evolution performance

Xinhe Wu,^a Duoduo Gao,^b Huogen Yu^{a,b*} and Jiaguo Yu^c

^a State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, People's Republic of China

^b Department of Chemistry, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, People's Republic of China

^c State Key Laboratory of Advanced Technology for Material Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, People's Republic of China

Tel: 0086-27-87756662, Fax: 0086-27-87879468

E-mail: yuhuogen@whut.edu.cn (H.Yu)

Fig. S1 The optical picture of 100 mg melamine power dispersing into 10 mL lactic acid solution containing different dosage of lactic acid for (a) 0 μ L, (b) 10 μ L, (c) 20 μ L, (d) 30 μ L, (e) 50 μ L and (f) 80 μ L.

Fig. S2 XRD patterns and their corresponding photographs of various samples: (a) g-

 $C_3N_4(700\mu L),$ (b) g-C_3N_4(800\mu L) and (c) g-C_3N_4(1000\mu L).

Fig. S3 The PL emission spectra of various samples: (a) bulk $g-C_3N_4$, (b) $g-C_3N_4(50\mu L)$, (c) $g-C_3N_4(500\mu L)$ and (d) $g-C_3N_4(700\mu L)$.

Samples	Precursors		Bulk g-C ₃ N ₄	Nanosheet	^a Nanosheet
	Melamine (g)	Lactic acid (µL)	products (g)	products (g)	yield (wt %)
bulk g-C ₃ N ₄	2.0	0	0.5796	0.0278	^b 1.39 %
$g-C_3N_4(50\mu L)$	2.0	50	~	0.6371	°31.86 %
$g-C_3N_4(500\mu L)$	2.0	500	~	0.7033	°35.16 %
$g-C_3N_4(700\mu L)$	2.0	700	~	0.5245	°26.23 %

Table S1. The masses of the bulk g-C_3N_4, g-C_3N_4(50 $\mu L)$, g-C_3N_4(500 $\mu L)$ and g-

 $C_3N_4(700\mu L)$, together with those of MA and LA used for preparing them.

^aThe yield is the transformation ratio from melamine precursor to $g-C_3N_4$ nanosheets. ^bThe yield is obtained from a well-known two-step calcination method (twice calcination at 550 °C for 4 h).

^cThe yield is obtained from the present lactic acid-mediated route (one-step calcination at 550 °C for 4 h).

Sample	S _{BET} (m ² g ⁻¹)	Pore volume (cm ³ g ⁻¹)	Average pore size (nm)
(a) bulk g-C ₃ N ₄	5.36	0.09	48.30
(b) $g-C_3N_4(50\mu L)$	22.32	0.10	31.49
(c) $g-C_3N_4(500\mu L)$	31.34	0.13	21.25
(d) $g-C_3N_4(700\mu L)$	14.49	0.11	30.52

Table S2. The specific surface area, pore volume and average pore size of varioussamples according to BET results.

Table S3. The element components of various samples according to XPS results.

Sample	С	Ν	0
(a) bulk $g-C_3N_4$	41.56	56.55	1.89
(b) $g-C_3N_4(50\mu L)$	42.32	54.75	2.93
(c) $g-C_3N_4(500\mu L)$	42.17	55.62	2.21
(d) g-C ₃ N ₄ (700µL)	42.96	54.14	2.90