Supporting Information

Band Gap Engineering of two-dimensional Triphenylene-Graphdiyne and its BN analog: A first-principles calculation

Imran Muhammad ^a, Huanhuan Xie ^a, Umer Younis ^a, Yu Qie ^a, Waseem Aftab ^a, and Qiang Sun ^{a,b,*}

^aDepartment of Material Science and Engineering, College of Engineering, Peking University, Beijing 10087, China.

^bCenter for Applied Physics and Technology, Peking University, Beijing 10087, China

1. Atomic structure of Tp-BNyne unit-cell in VASP POSCAR

H6B9N9C12

	13.96	8876	89053230) 91 -0.	000036	1897967	007	-0.0000	0232	5690029	4
	-6.984	4469′	77545057	29 12.	097454	11119903	330	0.0000	0477	33704824	4
	-0.000	00024	46000410	50 0.	000004	4090500	615	14.770	56277	6606594	1
ŀ	H B	Ν	С								
6	59	9	12								
Direct											
0	.4013	4940	93002178	8 0.457	095262	5099690	0.49	9999999	12969	9950	
0	.5429	0258	8449581	0.944	2546130	6776607	0.50	000000	80695	5042	
0	.0557	4210	46299554	0.598	651505	5025636	0.50	000001	4386	1630	
0	.5471	7748	91151187	0.584	8307742	2654246	0.49	9999998	25830	6667	
0	.0376	5737	45676710	0.452	8294813	3757177	0.49	999927	7921	7856	
0	.4151	7300	79543553	0.962	343204′	7822397	0.50	000002	31452	2524	
0	.6484	7925	34653986	6 0.878	8197192	2764877	0.50	000041	68458	8486	
0	.1211	7879	26150578	0.769	6562693	3428043	0.50	000000	7523	1326	
0	.2303	4136	67128479	0.351	5224284	4674903	0.50	000002	34976	5690	
0	.5415	9149	70581773	0.667	657920	1366848	0.50	000000	1218	5385	
0	.3323	4081	18509327	0.873	932836	0121884	0.50	000001	82007	7699	
0	.1260	6653	6516585	0.458	408704	6588636	0.49	9999980	65714	4232	
0	.4382	0581	83219240	6 0.7712	253159:	5928722	0.50	000001	88744	4663	
0	.2287	4935	35164615	5 0.666	952414′	7479489	0.50	000000	7763	1839	
0	.3330	4828	41683375	5 0.561	7975120	0322108	0.50	000003	5023	7747	
0	.1256	4385	5857097	0.354	085726	5609633	0.50	000001	24243	3023	
0	.2284	3917	16441046	6 0.874	357597:	5347306	0.50	000000	0499′	7659	
0	.6459	1548	26828647	0.771	5593392	2698895	0.50	000013	1432	1545	
0	.3286	2223	70865292	0.457	077847:	5652225	0.50	000000	26479	9035	
0	.1284	5391	13022087	0.671	3768332	2323604	0.50	000002	1995	7687	
0	.5429	2476	18273207	0.871	5476188	8544656	0.50	000013	20652	2155	
0	.2284	0928	58951620	0.561	7597860	6305227	0.50	000002	1794	1598	

0.3333517792294121	0.7715924712689659	0.500000012817989
0.4382416053376508	0.6666503152870999	0.500000139614947
0.7559598241751715	0.9869583411303406	0.5000001114204323
0.0130396022734018	0.7689947357549271	0.4999999967355750
0.2309979834625323	0.2440441792737042	0.4999999959513036
0.0285967773353957	0.2590346442064615	0.4999999868314922
0.2304384731217942	0.9714051343316346	0.4999999919655246
0.7409658844791553	0.7695629942496325	0.500000025354369
0.8438339855378422	0.0754713207013807	0.500000054581909
0.9245264862469414	0.7683595425950697	0.4999999912641150
0.2316357237682182	0.1561637985428802	0.4999999917126551
0.9404136953421516	0.1719599172981876	0.4999999816209704
0.2315453194162615	0.0595858538493372	0.4999999883238785
0.8280400817361151	0.7684557694810921	0.4999999851556934

Figure S1 Phonon spectra calculated with $2 \times 2 \times 1$ supercell.

2. PBE results for the PDOS of TpG and its BN-analogous structure.

Figure S2 Partial density of states of Tp-BNyne under (a) 0% (b) 10% Zigzag, and (c) Armchair, uniaxial

Figure S3 Partial density of states of TpG under (a) 0% (b) 10% Zigzag, and (c) Armchair, uniaxial strain.

Figure S4 Energetic stability changing with the length of C-chain length *n* in Tp-BNyne.