Supporting Information

La-doped ZnO ultra-flexible flutter-Piezoelectric Nanogenerator for Energy Harvesting and Sensing Applications: A Novel Renewable Source of Energy

Rajagopalan Pandey ¹, Gaurav Khandelwal ², Palani Iyamperumal Anand ^{1,3*,} Vipul Singh ⁴, Sang-Jae Kim ^{2*}

¹Mechatronics and Instrumentation Lab, Discipline of Metallurgy Engineering and Materials Science, Indian Institute of Technology Indore, Indore, 453552, India.

² Nano materials and Systems Lab, Department of Mechatronics Engineering, Jeju National University, Jeju, 63243, South Korea

³Mechatronics and Instrumentation Lab, Discipline of Mechanical Engineering, Indian Institute of Technology Indore, Indore, 453552, India.

⁴Molecular and Nano-electronics Research Group (MNRG), Discipline of Electrical Engineering, Indian Institute of Technology Indore, Indore, 453552, India.

* E-mail: kimsangj@jejunu@ac.kr, palaniia@iiti.ac.in,

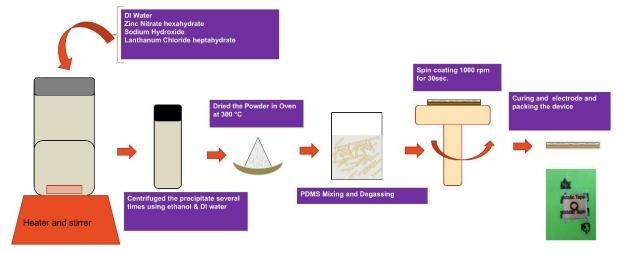


Figure S1. Schematic diagram of material and device fabrication and packaging

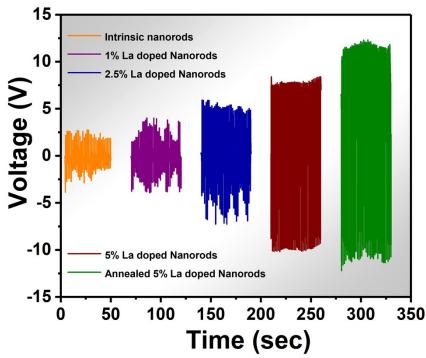


Figure S2. Optimization of Lanthanum dopant in ZnO. The data shows the piezoelectric output

of ZnO samples doped in various percentage of Lanthanum

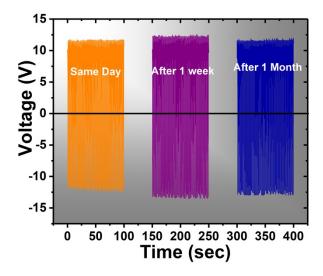
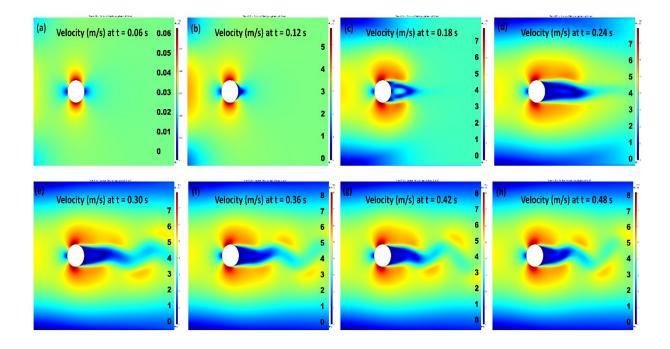



Figure S3. Long term stability of La-doped Device.

Table T1. Parameters us	sed in the simulation
-------------------------	-----------------------

Sr. No.	Parameters	Value
1	Radius of the bluff body	30 mm
2.	Fluid	Air
3.	Density	1.022 Kg/m ³
4.	Specific density	1.81 × 10 ⁻⁵ Pa-s
5.	Temperature	293.15 K
6.	Mean Velocity	2.8 , 3.4, 3.8 m/s

Figure S4. Time-dependent flow velocity variations around the body at t = 0.06, 0.12, 0.18, 0.24, 0.30, 0.36, 0.42, 0.48 s.