Supporting Information for: High-throughput Screening and Classification of Layered Di-Metal Chalcogenides

Table S1. The setup for generating the Monkhorst-Pack k-point meshes of 24 listed LDCs in Table 2.

C	mnounda	Number of k points			Compounds		Number of k points		
		b_1	b_2	b ₃	Compounds		b_1	b_2	b ₃
1	CsAg ₃ Se ₂	8	8	4	13	Cu ₃ TlSe ₂	8	4	4
2	KAgSe	8	8	4	14	$Cs_3Bi_7Se_{12}$	4	4	4
3	KCuSe	8	8	4	15	$BaCu_2S_2$	8	8	6
4	$Rb_2Ag_4S_3$	8	8	8	16	$BaCu_2Se_2$	8	8	6
5	$CsAg_3S_2$	8	4	4	17	$MgAl_2S_4 \\$	6	6	6
6	KCu ₃ S ₂	8	4	4	18	$ZnIn_2S_4$	7	3	3
7	$RbCu_3S_2$	8	8	8	19	$Ba_3Zr_2S_7$	8	8	4
8	KAg ₃ Se ₂	8	4	4	20	Ba_2ZrS_4	8	8	4
9	RbAg ₃ Se ₂	8	4	4	21	$Ba_4Zr_3S_{10}$	6	6	6
10	K ₂ Ag ₄ Se ₃	8	8	8	22	TlInS ₂	10	10	2
11	RbNaS	8	8	6	23	Bi ₂ PbSe ₄	5	5	5
12	Cu_3TlS_2	8	8	8	24	Bi ₂ Pb ₂ Se ₅	8	8	2

Commune la	Carrier	1			
Compounds	Туре	k path	Effective mass (m_0)		
BaCu ₂ S ₂	electron	Г-Х	0.20		
Ba_2ZrS_4	electron	Г-Х	0.20		
KAgSe	electron	Г-Х	0.17		
Cs ₃ Bi ₇ Se	electron	Y - X ₁	0.22		
	hole	$Y-X_1$	0.26		
$Rb_2Ag_4S_3$	electron	Γ-N	0.15		
	hole	Г-Х	0.16		
TlInS ₂	electron	K-M	0.31		
	hole	Г-А	0.16		
Bi ₂ PbSe ₄ -bulk	electron	$Z-P_1$	0.12		
	hole	$Z-P_1$	0.24		
MgAl ₂ S ₄ -bulk	electron	Г-Х	0.24		
	hole	Γ - L	0.36		
ZnIn ₂ S ₄ -bulk	electron	Г-Ү	0.21		
	hole	Г-Ү	0.21		
Bi ₂ PbSe ₄ -monolayer	electron	Г-М	0.22		
-	hole	Г-М	0.62		
MgAl ₂ S ₄ - monolayer	electron	Г-К	0.24		
	hole	Г-К	0.40		
ZnIn ₂ S ₄ - monolayer	electron	Г-К	0.24		
	hole	Г-К	0.34		

Table S2. The in-plane direction which has the smallest effective mass and the corresponding effective mass of the LDCs in Fig. 6. As a result of the small effective mass, the carrier mobility along that in-plane direction may be high.