## SUPPORTING INFORMATION

## Mechanistic role of support-catalyst interface in electrocatalytic water reduction by $Co_3O_4$ supported nanocarbon florets

Jayeeta Saha<sup>†a</sup>, Ranadeb Ball<sup>†a</sup>, Ananya Sah<sup>a</sup>, Vishwanath Kalyani<sup>a</sup>, Chandramouli Subramaniam<sup>\*a</sup>

Department of Chemistry, Indian Institute of Technology, Powai, Mumbai, Maharashtra 400076, India.

| Serial No. | Title                                                                                                          | Page No. |
|------------|----------------------------------------------------------------------------------------------------------------|----------|
| Figure S1  | SEM and TEM image of DFNS                                                                                      | 3        |
| Figure S2  | SEM image and Surface area plot of DFNS                                                                        | 4        |
| Table S1   | Summary of SSA of different nanocarbons                                                                        | 5        |
| Figure S3  | SEM image of -NCF                                                                                              | 6        |
| Figure S4  | TEM image of Co <sub>3</sub> O <sub>4</sub> -NCF                                                               | 6        |
| Figure S5  | TGA, Raman spectroscopy and XPS of Co <sub>3</sub> O <sub>4</sub> -NCF                                         | 7        |
| Figure S6  | SEM and TEM image of pure Co <sub>3</sub> O <sub>4</sub>                                                       | 8        |
| Figure S7  | XRD, XPS and Raman spectroscopy of pure Co <sub>3</sub> O <sub>4</sub>                                         | 9        |
| Figure S8  | Electrochemical data of Co <sub>3</sub> O <sub>4</sub> -NCF in acidic (H <sub>2</sub> SO <sub>4</sub> ) medium | 10       |
| Table S2   | Electrochemical comparison of Co <sub>3</sub> O <sub>4</sub> -NCF and pure Co <sub>3</sub> O <sub>4</sub>      | 10       |
| Table S3   | Summary of electrochemical parameter of different catalysts                                                    | 11       |
| Table S4   | Summary of SSA and capacitive double layer with different catalysts                                            | 12       |
| Figure S9  | Schematic representation of operand setup                                                                      | 13       |
| Figure S10 | Operando Raman spectra of Co <sub>3</sub> O <sub>4</sub> -NCF in basic condition with applied                  | 14       |
|            | potential                                                                                                      |          |
| Figure S11 | Operando Raman spectra of Co <sub>3</sub> O <sub>4</sub> -NCF in acidic condition with applied                 | 15       |
|            | potential                                                                                                      |          |
| Figure S12 | Comparison of CV of Co <sub>3</sub> O₄-NCF with Pt and graphite electrode                                      | 16       |
| Figure S13 | Redox behaviour of Co <sub>3</sub> O <sub>4</sub> -NCF in acidic and basic medium                              | 17       |
| Table S5   | ICP-AES analysis of acid treated Co <sub>3</sub> O <sub>4</sub> -NCF                                           | 17       |
| Figure S14 | Comparison of XPS: before and after electrochemistry                                                           | 18       |
| Figure S15 | Time resolved in-situ Raman spectro-electrochemical study of Co <sub>3</sub> O <sub>4</sub> -NCF               | 19       |
|            | in heavy water (D <sub>2</sub> O) for alHER at -0.4V (vs RHE)                                                  |          |
| Figure S16 | Electrochemical data of Co <sub>3</sub> O <sub>4</sub> -NCF in acidic (HClO <sub>4</sub> ) medium              | 19       |
| Scheme S1  | Proposed mechanism of HER with Co <sub>3</sub> O <sub>4</sub> -NCF                                             | 20       |
| References | References                                                                                                     | 20       |



Figure S1. (a,b) SEM images and (c,d) TEM image of DFNS.



**Figure S2.** (a, b) SEM images of NCF. (c) Pore-width distribution of NCF. (d) Ashby plot of SSA with pore diameter with different material.<sup>1–5</sup>

 Table S1. Summary of specific surface area and pore diameter of various carbon materials

| Serial<br>No. | Material                         | Specific surface<br>area (m²/g) | Pore diameter<br>(nm) | References |
|---------------|----------------------------------|---------------------------------|-----------------------|------------|
| 1             | Nanocarbon floret (NCF)          | 936                             | < 1                   | This work  |
| 2             | Carbon hollow spheres            | 648                             | 3                     | 1          |
| 3             | HMCSs                            | 769.5                           | 3.8                   | 3          |
| 4             | HCSs                             | 88                              | -                     | 6          |
| 5             | Annealed HCSs                    | 328                             | -                     |            |
| 6             | Hollow carbon nanospheres        | 42                              | -                     | 7          |
| 7             | Mesoporous Carbons               | 200                             | 20-50                 | 8          |
| 8             | Hollow carbon sphere             | 860                             | 2-4                   | 2          |
| 9             | N-doped hollow mesoporous carbon | 504                             | 5.1                   | 4          |
| 10            | Hollow carbon sphere             | 390                             | 1.26                  | 5          |
| 11            | Activated porous carbon          | 405                             | 4.2                   | 9          |
| 12            | Co-m-NC                          | 342                             | 4.7                   | 10         |
| 13            | MCN                              | 596                             | -                     | 11         |
| 14            | HMC                              | 340                             | -                     | 12         |



**Figure S3.** (a) SEM image and (b) composite mapping of Co (green) and C (red) of  $Co_3O_4$ -NCF. Individual mapping of (c) C, (d) O and (e) C.



Figure S4. SAED pattern of (a) pristine NCF and (b, c) HRTEM and (d) SAED pattern of Co<sub>3</sub>O<sub>4</sub>-NCF.



**Figure S5.** (a) Thermo-gravimetric analysis (TGA) of pristine NCF and  $Co_3O_4$ -NCF. (b) Raman spectra of pristine NCF and  $Co_3O_4$ -NCF (c) XPS of pristine NCF and  $Co_3O_4$ -NCF. (d) O 1s XPS of NCF and deconvolution of O 1s XPS of  $Co_3O_4$ -NCF.



**Figure S6.** (a) SEM and (b) TEM image of pure Co<sub>3</sub>O<sub>4</sub> prepared without NCF. (c) SAED pattern of pure Co<sub>3</sub>O<sub>4</sub>. (d) EDS mapping of pure Co<sub>3</sub>O<sub>4</sub>, (e) Carbon mapping and (f) Oxygen mapping.



Figure S7. (a) Raman spectra, (b) XRD, (c) Co 2p XPS and (d) O1s XPS of pure Co<sub>3</sub>O<sub>4</sub>.



**Figure S8.** (a) Linear sweep voltammetry in 0.5 M  $H_2SO_4$  (pH=0.5) of pure  $Co_3O_4$  and  $Co_3O_4$ -NCF (scan rate= 2 mV/s). (b) Cyclic voltammetry in 0.5 M  $H_2SO_4$  (pH=0.5) of blank glassy carbon (GC), pristine NCF, pure  $Co_3O_4$  and  $Co_3O_4$ -NCF (scan rate= 100 mV/s). (c) Nyquist plots of pure  $Co_3O_4$  and  $Co_3O_4$ -NCF. (d) Tafel plots of pure  $Co_3O_4$  and  $Co_3O_4$ -NCF.

## **Tafel slope calculation**

The current density (j) vs overpotential (t) data obtained from LSV (2 mV/s) were transformed into overpotential (t) vs log(|j|). Further, the overpotential varied linearly as a function of log(|j|) from log(|j|)=0 to 1 (1 corresponds to j=10 mA/cm<sup>2</sup>). The slope of the function was obtained using linear fit having R<sup>2</sup>=0.998, which gives the Tafel slope (mV/dec) for HER in alkaline and acidic medium.

 Table S2. Equivalent circuit extracted circuit parameters for different systems investigated.



| Catalyst                            | Medium                               | R1 Electrolyte<br>Resistance<br>(ohm) | R2 Charge<br>transfer<br>resistance<br>(ohm) | C <sub>dl</sub> double layer<br>capacitance<br>(mF/cm <sup>2</sup> ) |
|-------------------------------------|--------------------------------------|---------------------------------------|----------------------------------------------|----------------------------------------------------------------------|
| Pure Co <sub>3</sub> O <sub>4</sub> | 0.5 M H <sub>2</sub> SO <sub>4</sub> | 7.887                                 | 846.4                                        | 42                                                                   |
| Co <sub>3</sub> O <sub>4</sub> -NCF | 0.5 M H <sub>2</sub> SO <sub>4</sub> | 10.74                                 | 170.5                                        | 190                                                                  |
| Pure Co <sub>3</sub> O <sub>4</sub> | 1 M KOH                              | 14.04                                 | 350.9                                        | 36.5                                                                 |
| Co <sub>3</sub> O <sub>4</sub> -NCF | 1 M KOH                              | 16.39                                 | 35.8                                         | 410                                                                  |
| Pure Co <sub>3</sub> O <sub>4</sub> | 0.5 M HClO <sub>4</sub>              | 37.98                                 | 1986                                         | 31                                                                   |
| Co <sub>3</sub> O <sub>4</sub> -NCF | 0.5 M HClO <sub>4</sub>              | 57.27                                 | 80                                           | 75                                                                   |

| Serial<br>No. | Catalyst                                                 | Medium  | Overpotential<br>(mV) | Current<br>density<br>(mA/cm²) | Tafel<br>slope<br>(mV/dec) | Reference<br>(SI) |
|---------------|----------------------------------------------------------|---------|-----------------------|--------------------------------|----------------------------|-------------------|
| 1             | Co <sub>3</sub> O <sub>4</sub> -NCF                      | 1 M KOH | 460                   | 10                             | 119                        | This work         |
| 2             | Co₃O₄-<br>NCNT                                           | 1 M KOH | 350                   | 10                             | -                          | 13                |
| 3             | Co₃O₄-<br>carbon<br>paper                                | 1 M KOH | 350                   | 16.5                           | 115                        | 14                |
| 4             | Co <sub>3</sub> O <sub>4</sub> -<br>calcinated<br>carbon | 1 M KOH | 350                   | 8.5                            | 198                        | 14                |
| 5             | CoOx-CC                                                  | 1 M KOH | 193                   | 20                             | -                          | 15                |
| 6             | U-CNT-900                                                | 1 M KOH | 240                   | 10                             | -                          | 16                |
| 7             | Co₃O₄-Ni<br>foam                                         | 1 M KOH | 50                    | 1                              | -                          | 17                |

Table S3. Summary of electrochemical parameters of some reported catalysts

Table S4. Summary of SSA and  $C_{d\text{\tiny I}}$  of recently reported materials

| Serial No. | Materials                            | SSA (m²/g) | Cdl (mF/cm <sup>2</sup> ) | Reference |
|------------|--------------------------------------|------------|---------------------------|-----------|
| 1          | Metal-N-C (M=W,                      | 712-382    | -                         | 18        |
|            | Mo, Cr, Mn, Fe, Co,                  |            |                           |           |
|            | Ni, Cu, Zn)                          |            |                           |           |
| 2          | Co <sub>3</sub> O <sub>4</sub> -NCNT | 37         | -                         | 13        |
| 3          | CoO <sub>x</sub> -CNT-CC             | 88         | 1155                      | 15        |
| 4          | Co <sub>3</sub> O <sub>4</sub> -NCF  | 646        | 410                       | This work |



Figure S9. (a) Schematic representation of the operando Raman setup. Photograph of customized operando Raman setup with laser on (b) and laser off (c).



Figure S10. (a) Operando Raman spectra of Co<sub>3</sub>O<sub>4</sub>-NCF in 1 M KOH with different applied potential.
(b) Evolution of of I<sub>D</sub>/I<sub>G</sub> (blue) and HO-Co=O (black) in 1 M KOH.<sup>2</sup> (c) Operando Raman spectroscopy of HER at 0.8 V (vs RHE) in 1 M KOH using Co<sub>3</sub>O<sub>4</sub>-NCF catalyst (region 2600-3600 cm<sup>-1</sup>). (d) Raman spectroscopy of HER at 0.8 V (vs RHE) in 1 M KOH using Co<sub>3</sub>O<sub>4</sub>-NCF catalyst (region 2600-3600 cm<sup>-1</sup>). at 0 min (red) and 80 min (blue).



**Figure S11.** (a) Operando Raman spectroscopy of HER at 0.2 V (vs RHE) in 0.5 M  $H_2SO_4$  using  $Co_3O_4$ -NCF catalyst. (b) Spectral evolution of of  $I_D/I_G$  with time in 0.5 M  $H_2SO_4$  (black) and 1 M KOH (red).



**Figure S12.** Comparison CV of Co<sub>3</sub>O<sub>4</sub>-NCF with different counter electrodes (graphite rod and Pt) in both (a) acidic and (b) alkaline pH.



**Figure S13.** Cyclic voltammogram (CV) of Co<sub>3</sub>O<sub>4</sub>-NCF in (a) basic medium and (b) acidic medium.

| Table S5. ICP-AES ar | alysis of acid | treated Co <sub>3</sub> O <sub>4</sub> -NCF |
|----------------------|----------------|---------------------------------------------|
|----------------------|----------------|---------------------------------------------|

| Sample                                                                | Concentration of Cobalt (ppm) |
|-----------------------------------------------------------------------|-------------------------------|
| Co <sub>3</sub> O <sub>4</sub> -NCF in H <sub>2</sub> SO <sub>4</sub> | > 140                         |



**Figure S14.** Comparison of (a) Co 2p, (b) O 1s and (c) C 1s XPS of  $Co_3O_4$ -NCF before and after HER in 1 M KOH. Decovoluted (d) Co 2p, (e) O 1s and (f) C 1s XPS of  $Co_3O_4$ -NCF after HER in 1 M KOH.



**Figure S15.** a) Time resolved in-situ Raman spectro-electrochemical study of  $Co_3O_4$ -NCF in heavy water (D<sub>2</sub>O) for alHER and b) Intensity of Co-OOD peak (815 cm<sup>-1</sup>), Co-O<sub>x</sub> (699 cm<sup>-1</sup>) and I<sub>D</sub>/I<sub>G</sub> at -0.4V (vs RHE) with time under in-situ conditions.



**Figure S16.** a) Cyclic voltammetry in 0.5 M HClO<sub>4</sub> of pristine NCF, pure  $Co_3O_4$  and  $Co_3O_4$ -NCF (scan rate= 100 mV/s). (b) Linear sweep voltammetry in 0.5 M HClO<sub>4</sub> pristine NCF, pure  $Co_3O_4$  and  $Co_3O_4$ - NCF (scan rate= 2 mV/s). (c) Nyquist plots of pure  $Co_3O_4$  and  $Co_3O_4$ -NCF.



**Scheme S1.** Proposed mechanism of HER at Co<sub>3</sub>O<sub>4</sub>-NCF surface.

## Reference

- 1 T. R. Hellstern, J. Kibsgaard, C. Tsai, D. W. Palm, L. A. King, F. Abild-Pedersen and T. F. Jaramillo, *ACS Catal.*, 2017, **7**, 7126–7130.
- 2 Z. Jiang, Z. J. Jiang, T. Maiyalagan and A. Manthiram, *J. Mater. Chem. A*, 2016, **4**, 5877–5889.
- 3 Y. Li, H. Wang, L. Xie, Y. Liang, G. Hong and H. Dai, *J. Am. Chem. Soc.*, 2011, **133**, 7296–7299.
- 4 H. Zhang, X. Liu, Y. Wu, C. Guan, A. K. Cheetham and J. Wang, *Chem. Commun.*, 2018, **54**, 5268–5288.
- 5 Y. Liang, Y. Li, H. Wang, J. Zhou, J. Wang, T. Regier and H. Dai, *Nat. Mater.*, 2011, **10**, 780–786.

- 6 S. Zhang, X. Yu, F. Yan, C. Li, X. Zhang and Y. Chen, *J. Mater. Chem. A*, 2016, **4**, 12046–12053.
- 7 C. Huang, T. Ouyang, Y. Zou, N. Li and Z. Q. Liu, *J. Mater. Chem. A*, 2018, **6**, 7420–7427.
- 8 S. Du, Z. Ren, J. Zhang, J. Wu, W. Xi, J. Zhu and H. Fu, *Chem. Commun.*, 2015, **51**, 8066–8069.
- 9 H. S. Ahn and T. D. Tilley, *Adv. Funct. Mater.*, 2013, **23**, 227–233.
- 10 L. Hadidi, E. Davari, M. Iqbal, T. K. Purkait, D. G. Ivey and J. G. C. Veinot, *Nanoscale*, 2015, **7**, 20547–20556.
- 11 F. Hu, H. Yang, C. Wang, Y. Zhang, H. Lu and Q. Wang, *Small*, 2017, **13**, 1–8.
- 12 J. Wei, Y. Liang, X. Zhang, G. P. Simon, D. Zhao, J. Zhang, S. Jiang and H. Wang, *Nanoscale*, 2015, **7**, 6247–6254.
- 13 X. Zou, X. Huang, A. Goswami, R. Silva, B. R. Sathe and T. Asefa, *Angew. Chemie Int. Ed.*, 2014, **53**, 4372–4376.
- 14 J. Wan, W. Chen, C. Chen, Q. Peng, D. Wang and Y. Li, *Chem. Commun.*, 2017, **53**, 12177–12180.
- 15 J. Wang, Z. Wei, H. Wang, Y. Chen and Y. Wang, *J. Mater. Chem. A*, 2017, **5**, 10510– 10516.
- 16 K. Zhang, Y. Zhao, D. Fu and Y. Chen, *J. Mater. Chem. A*, 2015, **3**, 5783–5788.
- 17 A. J. Esswein, M. J. Mcmurdo, P. N. Ross, A. T. Bell and T. D. Tilley, *J. Phys. Chem. C*, 2009, **113**, 15068–15072.
- 18 A. Morozan, V. Goellner, Y. Nedellec, J. Hannauer and F. Jaouen, *J. Electrochem. Soc.*, 2015, **162**, H719–H726.