Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2019

Supporting Information

An implantable and versatile piezoresistive sensor for the monitoring of human-machine interfacing interactions and dynamical process of

nerve repair

Ping Wu^a, Ao Xiao^a, Yanan Zhao^a, Feixiang Chen^a, Meifang Ke^a, Qiang Zhang^a, Jianwei Zhang^b, Xiaowen Shi^b, Xiaohua He^a and Yun Chen^{a, c*}
a Department of Biomedical Engineering, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
b School of Resource and Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, China
c Hubei Province Key Laboratory of Allergy and Immune Related Diseases, Wuhan University, Wuhan 430071, China

Figure S1. Photograph of HSPS-*t*

Figure S2. Polyaniline mass percentage in HSPS-1, HSPS-2, HSPS-4 and HSPS-6

Figure S3. N_{1s} core level spectra of HSPS-*t*

		- N=	- N -	- N ⁺	$=\mathbf{N}^+$	NH/N-C	C=N/N-C	H-N-COO/
		(PANI)	(PANI)	(PANI)	(PANI)	(SPI)	(SPI)	N-C=C (SPI)
HSPS-0	Binding energy (eV)	399.5	400.5	402.5	403.5	398.7	399.8	401.2
	Binding area (%)	-	-	-	-	3.3	96.7	≈ 0
HSPS-1	Binding energy (eV)	399.5	400.5	402.5	403.5	398.5	400	401.2
	Binding area (%)	33.3	≈ 0	≈ 0	6.7	7.7	23.6	28.7
HSPS-2	Binding energy(eV)	399.5	400.5	402.5	403.5	398.7	400	401.2
	Binding area (%)	15.7	≈ 0	0.7	2.9	15.6	38.7	26.4
HSPS-4	Binding energy(eV)	399.5	400.5	402.5	403.5	398.5	400	401.2
	Binding area (%)	26.7	≈ 0	10.6	2.2	15.6	25.9	19
HSPS-6	Binding energy(eV)	399.5	400.5	402.5	403.5	398.5	400	401.2
	Binding area (%)	25	7.6	13.8	4.2	15.6	15.7	18.1

Table S1. XPS results of HSPS-*t*

Table S2. The (- N^+ + = N^+)/ N percentage in PANI of HSPS-1, HSPS-2, HSPS-3 and HSPS-4

	HSPS-1	HSPS-2	HSPS-4	HSPS-6
$(-N^{+}+=N^{+})/N$ percentage (%)	16.7	18.5	32.4	35.6

Figure S4. The resistance of HSPS-1, HSPS-2, HSPS-4 and HSPS-6 after 0 and 14 days of *in vitro* degradation

Figure S5. The compressive stress-strain (a), compressibility and compressive strength curves (b) of the HSPS-2 sponge after 3, 7 and 14 days *in vitro* degradation

Figure S6. Cell viability of L929 cells incubated with HSPS-t extract

Figure S7. SEM images of L929 cells cultured on tissue culture plate (control) and the surface of HSPS-*t*.

Figure S8. Biocompatibility of sham-operation, HSPS-0 and HSPS-2 sponges evaluated *in vivo*. (a) HE-staining after sensor implantation, scar bar=200 μm, (b) Immunofluorescent-staining after sensor implantation, scale bar=50 μm.

Figure S9. HSPS-2 sponge coated with conductive silver paste