3D hollow Co-Fe-P nanoframes immobilized on N,P-doped CNT as an efficient electrocatalyst for overall water splitting

Wenxin Li,^a Yuanfu Chen,^{*a, b} Bo Yu,^a Yang Hu,^a Xinqiang Wang,^a Dongxu Yang^a

^a School of Electronic Science and Engineering, and State Key Laboratory

of Electronic Thin Films and Integrated Devices, University of Electronic

Science and Technology of China, Chengdu 610054, PR China-

^b School of Science, Tibet University, Lhasa 850000, PR China

*Corresponding authors. E-mails: yfchen@uestc.edu.cn (Y.F. Chen).

Address: State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, PR China.

Faradaic efficiency calculation

During the OER (or HER), n_{O_2} (experimental) (or n_{H_2} (experimental)) is estimated from the observed gas amount and the theoretical number of moles of oxygen (or hydrogen) evolved can be calculated using the following equation :

$$n_{O_2^{orH_2}}$$
(theoretical) = $\frac{Q}{nF}$

Where ${}^{n_{O_2} or H_2}$ is the number of moles of oxygen (or hydrogen) produced, Q is the charge passed through the electrodes, F is the Faradaic constant (96485 C mol⁻¹), and *n* is the number of electrons transferred during OER (four moles of electrons per mole of O₂) or HER (two moles of electrons per mole of H₂). Thus, Faradaic efficiency can be determined by the following equation:

Faradaic efficiency =
$$\frac{n (experimental)}{n (theortical)} \times 100\%$$

Fig. S1 XRD patterns of CoFe PBA, CoFe NFs, CoFeP NFs, CoFeP/NPCNT and CoFeP.

Fig. S2 Raman pattern of CoFeP NFs/NPCNT.

Fig. S3 Particle size distribution histograms of (a) CoFe PBA/CNT, (b) CoFe NFs/CNT and (c) CoFeP NFs/NPCNT.

Fig. S4 The SEM images of CoFe PBA (a-b), CoFe NFs (c-d), CoFeP NFs (e-f), CoFeP (g-h) and CoFeP/NPCNT (i-j). EDS element mapping image (k) of N,P doped CNT

Fig. S5 EDS spectra of the CoFeP NFs@NPCNT

Fig. S6 (a) The cyclic voltammograms of CoFeP NFs/NPCNT in the potential range between 1.097 to 1.197 V vs RHE for OER. (b) The cyclic voltammograms of CoFeP NFs/NPCNT in the potential range between 0.017 to 0.117 V vs RHE for HER.

Fig. S7 (a) OER LSV curves and (b) HER LSV curves of the catalysts in 1.0 M KOH with and without iR correction.

Fig. S8 Chronopotentiometric curves of the CoFeP NFs/NPCNT catalyst at 10 mA/cm² for (a) OER and (b) water-splitting in 1.0 M KOH.

Fig. S9 The theoretical and measured yields of H_2 and O_2 over time during electrolysis of CoFeP NFs/NPCNT electrode at the current density of 10 mA cm⁻². Faradaic efficiency of CoFeP NFs/NPCNT electrode for H_2 and O_2 evolution in comparison with theoretical estimation

Table

Table S1 Summary of OER performance of some catalysts in previous works and our work

Samples	Tafel slope (mV/dec)	Over potential (mV) @10mA/cm ²	Electrolyte	References
CoFeP NFs/NPCNT	42.8	285	1 M KOH	This work
CoP/CoP ₂ @ NPCNTs	67	300	1 M KOH	1
porous Ni ₂ P NS	105	320	1 M KOH	2
Co _{0.6} Fe _{0.4} P-1.125	48	297	1 M KOH	3
Co ₂ P/NPCNT	53	370	1 M KOH	4
CoNi _{0.2} Fe _{0.05} -Z-H-P	48.2	316	1 M KOH	5
Co_3S_4 @ MoS_2	43	280	1 M KOH	6
Co ₂ P/Co-Foil	79	319	1 M KOH	7
Ni_xP_y -325	72.2	320	1 M KOH	8
CoNiBO nanosheets	60	300	1 M KOH	9
NiCoFe MOF	49	320	1 M KOH	10
NiCoP/C	96	330	1 M KOH	11
Ni @ NC-800	45	280	1 M KOH	12
CNTs @ NiCoP/C	57.3	297	1 M KOH	13
NiCoP/NC PHCs	51	297	1 M KOH	14

Samples	Tafel slope (mV/dec)	Over potential (mV) @10mA/cm ²	Electrolyte	References
CoFeP NFs/NPCNT	64.1	137	1 M KOH	This work
porous Ni ₂ P NS	63	168	1 M KOH	2
Co_3S_4 @ MoS_2	74	136	1 M KOH	6
Co ₂ P/Co-Foil	59	157	1 M KOH	7
Ni_xP_y -325	107.3	160	1 M KOH	8
CoNiBO nanosheets	116	140	1 M KOH	9
NiCoFe MOF	114	270	1 M KOH	10
Ni @ NC-800	160	205	1 M KOH	12
Ni ₂ P/CoP NP	67	184	1 M KOH	15
NiCoP/rGO	124.1	209	1 M KOH	16
NiFe LDH-NS@DG10	110	300	1 M KOH	17
NDGL coated Fe-Ni	133.2	201	1 M KOH	18
NiS/NiS ₂	95.1	143	1 M KOH	19
Ni _{1.5} Fe _{0.5} P	125	282	1 M KOH	20
NOGB-800	98	220	1 M KOH	21

Table S2 Summary of HER performance of some catalysts in previous works and our work

Samples	Potential (V) @10mA/cm ²	References
CoFeP NFs/NPCNT	1.56	This work
Co _{0.6} Fe _{0.4} P-1.125	1.57	3
Co_3S_4 @ MoS_2	1.58	6
Co ₂ P/Co-Foil	1.71	7
Ni_xP_y -325	1.57	8
CoNiBO nanosheets	1.69	9
Ni @ NC-800	1.6	12
NiCoP/rGO	1.59	16
NDGL coated Fe-Ni	1.701	18
NiS/NiS ₂	1.62	19
NOGB-800	1.65	21
NiCo ₂ P ₂ /GQD nanosheet array	1.61	22
Ni-Co-P HNBs	1.62	23
Co ₄ Ni ₁ P NTs	1.59	24
(Ni,Co)Se ₂ -GA	1.6	25

Table S3 Summary of overall water-splitting performance of some catalysts in previous works and our work

References:

- 1 Li, H., Xu, S., Yan, H., Yang, L. and Xu, S., Small, 2018, 1800367.
- 2 Wang, Q., Liu, Z., Zhao, H., Huang, H., Jiao, H. and Du, Y., J. Mater. Chem. A, 2018.
- 3 Lian, Y., Sun, H., Wang, X., Qi, P., Mu, Q., Chen, Y., Ye, J., Zhao, X., Deng, Z. and Peng, Y., *Chem. Sci.*, 2019.
- 4 Das, D., Das, A., Reghunath, M. and Nanda, K.K., *Green Chem.*, 2017, **19**, 1327-1335.
- 5 Wang, M., Dong, C., Huang, Y., Li, Y. and Shen, S., Small, 2018, 14, 1801756.
- 6 Guo, Y., Tang, J., Wang, Z., Kang, Y., Bando, Y. and Yamauchi, Y., *Nano Energy*, 2018, **47**, 494-502.
- 7 Yuan, C., Zhong, S., Jiang, Y., Yang, Z.K., Zhao, Z., Zhao, S., Jiang, N. and Xu, A., *J. Mater. Chem. A*, 2017, **5**, 10561-10566.
- 8 Li, J., Li, J., Zhou, X., Xia, Z., Gao, W., Ma, Y. and Qu, Y., ACS Appl. Mater. Interfaces, 2016, 8, 10826-10834.
- 9 He, T., Nsanzimana, J.M.V., Qi, R., Zhang, J., Miao, M., Yan, Y., Qi, K., Liu, H. and Xia, B.Y., J. Mater. Chem. A, 2018, 6, 23289-23294.
- 10 Ahn, W., Park, M.G., Lee, D.U., Seo, M.H., Jiang, G., Cano, Z.P., Hassan, F.M. and Chen, Z., *Adv. Funct. Mater.*, 2018, **28**, 1802129.
- 11 He, P., Yu, X. and Lou, X.W.D., Angew. Chem. Int. Ed., 2017, 56, 3897-3900.
- 12 Xu, Y., Tu, W., Zhang, B., Yin, S., Huang, Y., Kraft, M. and Xu, R., Adv. Mater., 2017, 29, 1605957.
- 13 Zhao, Y., Fan, G., Yang, L., Lin, Y. and Li, F., *Nanoscale*, 2018, **10**, 13555-13564.
- 14 Zhang, X., Huang, L., Wang, Q. and Dong, S., J. Mater. Chem. A, 2017, 5, 18839-18844.
- Liang, X., Zheng, B., Chen, L., Zhang, J., Zhuang, Z. and Chen, B., ACS Appl. Mater. Interfaces, 2017, 9, 23222-23229.
- 16 Li, J., Yan, M., Zhou, X., Huang, Z., Xia, Z., Chang, C., Ma, Y. and Qu, Y., Adv. Funct. Mater., 2016, 26, 6785-6796.
- 17 Jia, Y., Zhang, L., Gao, G., Chen, H., Wang, B., Zhou, J., Soo, M.T., Hong, M., Yan, X., Qian, G., Zou, J., Du, A. and Yao, X., Adv. Mater., 2017, 29, 1700017.
- 18 Zhang, L., Hu, J., Huang, X., Song, J. and Lu, S., *Nano Energy*, 2018, **48**, 489-499.
- 19 Li, Q., Wang, D., Han, C., Ma, X., Lu, Q., Xing, Z. and Yang, X., J. Mater. Chem. A, 2018, 6, 8233-8237.
- 20 Huang, H., Yu, C., Zhao, C., Han, X., Yang, J., Liu, Z., Li, S., Zhang, M. and Qiu, J., Nano Energy, 2017, 34, 472-480.
- 21 Hu, Q., Li, G., Li, G., Liu, X., Zhu, B., Chai, X., Zhang, Q., Liu, J. and He, C., Adv. Energy Mater., 2019, 1803867.
- 22 Tian, J., Chen, J., Liu, J., Tian, Q. and Chen, P., Nano Energy, 2018, 48, 284-291.
- 23 Hu, E., Feng, Y., Nai, J., Zhao, D., Hu, Y. and Lou, X.W.D., *Energy Environ. Sci.*, 2018, **11**, 872-880.
- 24 Yan, L., Cao, L., Dai, P., Gu, X., Liu, D., Li, L., Wang, Y. and Zhao, X., Adv. Funct. Mater., 2017, 27, 1703455.
- 25 Xu, X., Liang, H., Ming, F., Qi, Z., Xie, Y. and Wang, Z., ACS Catal., 2017, 7, 6394-6399.