Supporting Information

High-Performance Electrochromic Films with Fast Switching Times Using Transparent/Conductive Nanoparticle-Modulated Charge Transfer[†]

Junsang Yun,‡^a Yongkwon Song,‡^a Ikjun Cho,^a Yongmin Ko,^a Cheong Hoon Kwon,^a and Jinhan Cho*^a

^aDepartment of Chemical & Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea. E-mail: jinhan71@korea.ac.kr

[‡]These authors contributed equally to this work.

Fig. S1 FTIR spectra of pristine OAm-WO_{2.72} NRs and TREN. In the case of OAm-WO_{2.72} NRs, the C–H stretching peaks (*ca.* 2,926 and 2,854 cm⁻¹) and the W–O stretching peaks (*ca.* 927 and 870 cm⁻¹) derived from the long alkyl chains of OAm ligands and WO_{2.72} NRs, respectively, are detected. However, in the case of TREN, there are no distinct absorption peaks at those ranges.

Fig. S2 Cross-sectional FE-SEM images and the corresponded thickness of $(WO_{2.72}$ NR/TREN)_n multilayers as a function of bilayer number (n).

Fig. S3 Enlarged planar FE-SEM image of $(WO_{2.72} NR/TREN)_{40}$ multilayers. As shown in the image, the continuous deposition of NR-type $WO_{2.72}$ forms a porous structure due to the random packing effects, which can facilitate an intercalation of Li⁺ ions and an incorporation of additional transparent/conductive ITO NPs.

Fig. S4 Optical transmittance spectra of $(WO_{2.72} \text{ NR/TREN})_n$ multilayers as a function of bilayer number (n) under applied potentials ranging from -1.0 V to -4.0 V. The optical modulations are obtained from the variations of transmittance between bleached state (+ 4.0 V) and colored state (- 4.0 V) at a wavelength of 633 nm. (a) n = 10, (b) n = 20, (c) n = 30, and (d) n = 40.

Fig. S5 Stability test of $(WO_{2.72} NR/TREN)_{20}$ multilayers under alternating potentials of -4.0 V and +4.0 V for 30 s interval.

Fig. S6 (a) Cyclic voltammograms of $(WO_{2.72} NR/PEI)_{20}$ multilayers in a scan rate ranging from 10 to 100 mV s⁻¹. (b) Square root of scan rates $(v^{1/2})$ -dependent redox peak current densities (I_p) from CV curves of $(WO_{2.72} NR/TREN)_{20}$ and $(WO_{2.72} NR/PEI)_{20}$ multilayers.

Fig. S7 Optical transmittance spectra of $(WO_{2.72} NR/PEI)_{20}$ multilayers at colored state (from -1.0 V to -4.0 V). In this case, the optical modulations between bleached state (+ 4.0 V) and colored state (- 4.0 V) at a wavelength of 633 nm is measured to be 35.1%.

Fig. S8 (a) FTIR spectra of pristine OAm-ITO NPs and TREN. (b) FTIR spectra and schematic representation of (ITO NP/TREN)_n multilayers as a function of bilayer number (n). The C–H stretching peaks originated from the long alkyl chains of OAm ligands at 2,926 and 2,854 cm⁻¹ appeared and disappeared repeatedly according to the alternating deposition of OAm-ITO NPs and TREN. These phenomena imply a formation of (ITO NP/TREN)_n multilayers through ligand-exchange reactions between OAm ligands and TREN.

Fig. S9 Magnified planar FE-SEM image of $(WO_{2.72} NR/TREN/ITO NP/TREN)_{20}$ multilayers. As shown in the image, the formed multilayers still exhibited nanoporous structure after the incorporation of ITO NPs, facilitating the diffusion of Li⁺ ions into the EC films.

Fig. S10 Cyclic voltammograms of $(WO_{2.72} NR/TREN/ITO NP/TREN)_{20}$ multilayers in a scan rate ranging from 10 to 100 mV s⁻¹.

Fig. S11 (a) Cyclic voltammograms at a scan rate of 100 mV s⁻¹ and (b) Nyquist plots of WO_{2.72} NR-based EC films with ITO NPs (m = 20), without ITO NPs (n = 20), and the pristine ITO NP films.

Fig. S12 Optical transmittance spectra of $(WO_{2.72} NR/TREN/ITO NP/TREN)_m$ multilayers with increasing periodic number (m) under applied potentials ranging from -1.0 V to -4.0 V. The optical modulations between bleached state (+ 4.0 V) and colored state (- 4.0 V) at a wavelength of 633 nm are also shown. (a) m = 10, (b) m = 20, (c) m = 30, and (d) m = 40.

Fig. S13 Comparison of optical modulations at a wavelength of 633 nm between $(WO_{2.72}$ NR/TREN)_n and $(WO_{2.72}$ NR/TREN/ITO NP/TREN)_m multilayers as a function of bilayer (n) or periodic (m) number. The WO_{2.72} NR-based EC films with ITO NPs exhibit the higher optical modulations at the same layer number of WO_{2.72} NRs compared to the EC films without ITO NPs.

Fig. S14 Photographic images of electrochromic $(WO_{2.72} \text{ NR/TREN})_n$ and $(WO_{2.72} \text{ NR/TREN})_m$ multilayers under applied potentials of + 4.0 V (bleached state) and – 4.0 V (colored state). In this case, the $WO_{2.72}$ NR-based EC films with ITO NPs display a deeper color change than the EC films without ITO NPs.

Fig. S15 (a) CEs of $(WO_{2.72} NR/TREN/ITO NP/TREN)_m$ multilayers as a function of periodic number (m). (b) Comparison of CEs between $(WO_{2.72} NR/TREN)_n$ and $(WO_{2.72} NR/TREN/ITO NP/TREN)_m$ multilayers at the same layer number of $WO_{2.72} NR$ s.

Fig. S16 Cycling retention test of $(WO_{2.72} NR/TREN/ITO NP/TREN)_{20}$ multilayers under alternating potentials of -4.0 V and +4.0 V for 30 s interval.

Electrodes	Method	t _c (s)	$\mathbf{t}_{\mathbf{b}}\left(\mathbf{s} ight)$	ΔΤ (%)	CE (cm ² /C)	Reference
(WO _{2.72} NR/TREN /ITO NP/TREN) ₁₀	LbL assembly	4.1	1.5	32.0 at 633 nm	33.2	Our work
(WO _{2.72} NR/TREN /ITO NP/TREN) ₂₀	LbL assembly	5.0	3.0	41.6 at 633 nm	41.5	Our work
(WO _{2.72} NR/TREN /ITO NP/TREN) ₃₀	LbL assembly	8.2	11.4	52.9 at 633 nm	48.9	Our work
(WO _{2.72} NR/TREN /ITO NP/TREN) ₄₀	LbL assembly	10.9	15.2	55.8 at 633 nm	55.2	Our work
WO _{2.72} NW films	Langmuir-Blodgett	10	2	11.5 at 633 nm**	-	S1
WO _{2.72} NW films	Langmuir-Blodgett	30	16	49.2 at 633 nm**	-	S1
MoO ₃ -W _{0.71} Mo _{0.29} O ₃ hybrid films*	Drop casting	17.2	28.4	41.9 at 633 nm	19.0	S2
WO ₃ /Ag/WO ₃ films	Sputtering deposition	15.9	6.6	35.5 at 650 nm	28.3	S3
P ₈ W ₄₈ /W ₁₈ O ₄₉ nanocomposites*	LbL assembly	52	26	39.0 at 500 nm**	21.4	S4

Table S1. Comparison of EC performance of WO_x -based films in lithium-based electrolytes.

W _{0.71} Moo nar	0.29O3/PEDOT:PSS	Spray LbL assembly	17.9	10.5	65.1 at 633 nm	52.8	S5
Ну	perbranched WO ₃ films	Pulsed laser deposition	0.9	55	67.3 at 660 nm	65.4	S6
I a-W	Dual-phase O ₃ /WO ₃ films	Inkjet printing	5	5	12.8 at 633 nm**	3.12	S7
,	WO3 films	Langmuir-Blodgett	>3.6	>3.1	25.9 at 630 nm	71.3	S 8
[WO ₂ (0	D ₂)H ₂ O]•1.66H ₂ O films	Electrophoretic deposition	7.8	1.7	32.0 at 632 nm	11.5	S 9
PEI/V nar	VO ₃ nanosheets nocomposites	LbL assembly	660	11	37.5 at 633 nm**	32.0	S10

* Mo: Molybdenum, P₈W₄₈: K₂₈Li₅H₇P₈W₄₈O₁₈₄•92H₂O polyoxometalates.

** EC performance was evaluated from given data in the literature.

Supplementary references

- S1 J.-W. Liu, J. Zheng, J.-L. Wang, J. Xu, H.-H. Li, S.-H. Yu, *Nano Lett.*, 2013, 13, 3589–3593.
- S2 H. Li, L. McRae, C. J. Firby, M. Al-Hussein, A. Y. Elezzabi, *Nano Energy*, 2018, 47, 130–139.
- S3 Y. Yin, C. Lan, H. Guo, C. Li, ACS Appl. Mater. Interfaces, 2016, 8, 3861–3867.
- S4 H. Gu, C. Guo, S. Zhang, L. Bi, T. Li, T. Sun, S. Liu, ACS Nano, 2018, 12, 559–567.
- S5 H. Li, L. McRae, A. Y. Elezzabi, ACS Appl. Mater. Interfaces, 2018, 10, 10520–10527.
- S6 R. Giannuzzi, M. Balandeh, A. Mezzetti, L. Meda, P. Pattathil, G. Gigli, F. D. Fonzo, M.
 Manca, *Adv. Optical Mater.*, 2015, 3, 1614–1622.
- S7 L. Santos, P. Wojcik, J. V. Pinto, E. Elangovan, J. Viegas, L. Pereira, R. Martins, E.
 Fortunato, *Adv. Electron. Mater.*, 2015, 1, 1400002.
- S8 V. V. Kondalkar, S. S. Mali, R. R. Kharade, R. M. Mane, P. S. Patil, C. K. Hong, J. H.
 Kim, S. Choudhury, P. N. Bhosale, *RSC Adv.*, 2015, 5, 26923–26931.
- S. Wang, K. Dou, Y. Zou, Y. Dong, J. Li, D. Ju, H. Zeng, J. Colloid Interface Sci., 2017, 489, 85–91.
- S10 K. Wang, P. Zeng, J. Zhai, Q. Liu, Electrochem. Commun., 2013, 26, 5-9.